Suppr超能文献

一种创新的产卵器用于小生境开发,影响了雌雄间的生殖器协同进化在破坏果实的 。

An innovative ovipositor for niche exploitation impacts genital coevolution between sexes in a fruit-damaging .

机构信息

Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan.

Department of Biology, Keio University, Yokohama 233-8521, Japan.

出版信息

Proc Biol Sci. 2018 Sep 26;285(1887):20181635. doi: 10.1098/rspb.2018.1635.

Abstract

Limited attention has been given to ecological factors influencing the coevolution of male and female genitalia. The innovative ovipositor of , an invading fruit pest, represents an appealing case to document this phenomenon. The serrated saw-like ovipositor is used to pierce the hard skin of ripening fruits that are not used by other fruit flies that prefer soft decaying fruits. Here, we highlight another function of the ovipositor related to its involvement in genital coupling during copulation. We compared the morphology and coupling of male and female genitalia in this species to its sibling species, , and to an outgroup species, These comparisons and a surgical manipulation indicated that the shape of male genitalia in has had to be adjusted to ensure tight coupling, despite having to abandon the use of a hook-like structure, paramere, because of the more linearly elongated ovipositor. This phenomenon demonstrates that ecological niche exploitation can directly affect the mechanics of genital coupling and potentially cause incompatibility among divergent forms. This model case provides new insights towards elucidating the importance of the dual functions of ovipositors in other insect species that potentially induce genital coevolution and ecological speciation.

摘要

人们对影响雌雄生殖器共同进化的生态因素关注有限。入侵性果实害虫 的创新型产卵器为记录这一现象提供了一个有吸引力的案例。锯齿状的产卵器用于刺穿成熟果实的坚硬外皮,而其他果实蝇则更喜欢柔软腐烂的果实,因此不会使用这种产卵器。在这里,我们强调了产卵器在交配过程中与生殖器结合相关的另一个功能。我们将该物种的雄性和雌性生殖器的形态和结合与它的姐妹种 和一个外群物种 进行了比较。这些比较和手术操作表明, 种雄性生殖器的形状必须进行调整,以确保紧密结合,尽管由于产卵器更线性伸长,不得不放弃使用钩状结构 - 尾须。这种现象表明,生态位的利用可以直接影响生殖器结合的力学特性,并可能导致不同形态之间的不兼容。这种典型案例为阐明产卵器的双重功能在其他可能引起生殖器共同进化和生态物种形成的昆虫物种中的重要性提供了新的见解。

相似文献

1
An innovative ovipositor for niche exploitation impacts genital coevolution between sexes in a fruit-damaging .
Proc Biol Sci. 2018 Sep 26;285(1887):20181635. doi: 10.1098/rspb.2018.1635.
2
The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species.
Proc Biol Sci. 2014 Feb 26;281(1781):20132840. doi: 10.1098/rspb.2013.2840. Print 2014 Apr 22.
5
Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor.
J Insect Physiol. 2020 Aug-Sep;125:104088. doi: 10.1016/j.jinsphys.2020.104088. Epub 2020 Jul 8.
6
Drosophila pachea asymmetric lobes are part of a grasping device and stabilize one-sided mating.
BMC Evol Biol. 2016 Sep 1;16(1):176. doi: 10.1186/s12862-016-0747-4.
7
Evolution of Multiple Sensory Systems Drives Novel Egg-Laying Behavior in the Fruit Pest Drosophila suzukii.
Curr Biol. 2017 Mar 20;27(6):847-853. doi: 10.1016/j.cub.2017.01.055. Epub 2017 Mar 9.
8
Behavioral and Genomic Sensory Adaptations Underlying the Pest Activity of Drosophila suzukii.
Mol Biol Evol. 2021 May 19;38(6):2532-2546. doi: 10.1093/molbev/msab048.
10
Evolution of Ovipositor Length in Drosophila suzukii Is Driven by Enhanced Cell Size Expansion and Anisotropic Tissue Reorganization.
Curr Biol. 2019 Jun 17;29(12):2075-2082.e6. doi: 10.1016/j.cub.2019.05.020. Epub 2019 Jun 6.

引用本文的文献

1
Correlated evolution of elaborate intromission mechanics during copulation between the sexes in leaf beetles.
J R Soc Interface. 2025 Jun;22(227):20250155. doi: 10.1098/rsif.2025.0155. Epub 2025 Jun 11.
2
Parallels in the Regulatory Landscape of Dimorphic Female and Male Genital Structures in .
bioRxiv. 2025 May 15:2025.05.12.653573. doi: 10.1101/2025.05.12.653573.
3
4
Effect of acetic acid bacteria colonization on oviposition and feeding site choice in and its related species.
MicroPubl Biol. 2024 Feb 6;2024. doi: 10.17912/micropub.biology.001111. eCollection 2024.
6
knockout affects development and fecundity of .
Front Physiol. 2023 Nov 10;14:1290732. doi: 10.3389/fphys.2023.1290732. eCollection 2023.
9
A standardized nomenclature and atlas of the female terminalia of .
Fly (Austin). 2022 Dec;16(1):128-151. doi: 10.1080/19336934.2022.2058309.
10
Resolving between novelty and homology in the rapidly evolving phallus of Drosophila.
J Exp Zool B Mol Dev Evol. 2023 Mar;340(2):182-196. doi: 10.1002/jez.b.23113. Epub 2021 Dec 27.

本文引用的文献

2
Genome comparisons indicate recent transfer of Ri-like between sister species and .
Ecol Evol. 2017 Oct 8;7(22):9391-9404. doi: 10.1002/ece3.3449. eCollection 2017 Nov.
3
Evolution of Multiple Sensory Systems Drives Novel Egg-Laying Behavior in the Fruit Pest Drosophila suzukii.
Curr Biol. 2017 Mar 20;27(6):847-853. doi: 10.1016/j.cub.2017.01.055. Epub 2017 Mar 9.
4
Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.
Mol Biol Evol. 2017 Apr 1;34(4):980-996. doi: 10.1093/molbev/msx050.
7
Mechanisms and Evidence of Genital Coevolution: The Roles of Natural Selection, Mate Choice, and Sexual Conflict.
Cold Spring Harb Perspect Biol. 2015 Jul 1;7(7):a017749. doi: 10.1101/cshperspect.a017749.
8
Drosophila suzukii: the genetic footprint of a recent, worldwide invasion.
Mol Biol Evol. 2014 Dec;31(12):3148-63. doi: 10.1093/molbev/msu246. Epub 2014 Aug 25.
9
The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species.
Proc Biol Sci. 2014 Feb 26;281(1781):20132840. doi: 10.1098/rspb.2013.2840. Print 2014 Apr 22.
10
Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup.
PLoS One. 2013;8(2):e57158. doi: 10.1371/journal.pone.0057158. Epub 2013 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验