Suppr超能文献

CVB3 非结构 2A 蛋白通过 MEK/ERK 通路调节 SREBP1a 信号通路。

CVB3 Nonstructural 2A Protein Modulates SREBP1a Signaling via the MEK/ERK Pathway.

机构信息

Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.

The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01060-18. Print 2018 Dec 15.

Abstract

Coxsackievirus B3 (CVB3) is the predominant pathogen of viral myocarditis. In our previous study, we found that CVB3 caused abnormal lipid accumulation in host cells. However, the underlying mechanisms by which CVB3 disrupts and exploits the host lipid metabolism are not well understood. Sterol regulatory element binding protein 1 (SREBP1) is the major transcriptional factor in lipogenic genes expression. In this study, we demonstrated that CVB3 infection and nonstructural 2A protein upregulated and activated SREBP1a at the transcriptional level. Deletion analysis of SREBP1a promoter revealed that two regions, -1821/-1490 and -312/+217, in this promoter were both required for its activation by 2A. These promoter regions possessed several binding motifs for transcription factor SP1. Next, we used SP1-specific small interfering RNAs (siRNAs) to confirm that SP1 might be the essential factor in SREBP1a upregulation by 2A. Furthermore, we showed that MEK/ERK pathway was involved in the activation of SREBP1a by 2A and that blocking this signaling pathway with the specific inhibitor U0126 attenuated SREBP1a activation and lipid accumulation by 2A. Finally, we showed that inhibition of SREBP1 with siRNAs attenuated lipid accumulation induced by CVB3 infection and reduced virus replication. Moreover, inhibition of the MEK/ERK pathway also led to reduction of SREBP1a activation, lipid accumulation, and virus replication during CVB3 infection. Taken together, these data demonstrate that CVB3 nonstructural 2A protein activates SREBP1a at the transcription level through a mechanism involving MEK/ERK signaling pathway and SP1 transcription factor, which promotes cellular lipid accumulation and benefits virus replication. Coxsackievirus B3 (CVB3) infection is the leading cause of viral myocarditis, but effective vaccines and antiviral therapies against CVB3 infection are still lacking. It is important to understand the precise interactions between host and virus for the rational design of effective therapies. During infection, CVB3 disrupts and exploits host lipid metabolism to promote excessive lipid accumulation, which benefits virus replication. SREBP1 is the master regulator of cellular lipid metabolism. Here, we report that one of the viral nonstructural proteins, 2A, upregulates and activates SREBP1a. Furthermore, we find that inhibition of SREBP1 decreases CVB3 virus replication. These results reveal the regulation of SREBP1a expression by 2A and the roles of SREBP1 in lipid accumulation and viral replication during CVB3 infection. Our findings provide a new insight into CVB3 host interactions and inform a potential novel therapeutic target for this important pathogen.

摘要

柯萨奇病毒 B3(CVB3)是病毒性心肌炎的主要病原体。在我们之前的研究中,我们发现 CVB3 导致宿主细胞中异常脂质积累。然而,CVB3 破坏和利用宿主脂质代谢的潜在机制尚不清楚。固醇调节元件结合蛋白 1(SREBP1)是脂质生成基因表达的主要转录因子。在这项研究中,我们证明 CVB3 感染和非结构 2A 蛋白在转录水平上调并激活 SREBP1a。SREBP1a 启动子的缺失分析表明,该启动子中的两个区域-1821/-1490 和-312/+217,都需要 2A 来激活。这些启动子区域具有几个转录因子 SP1 的结合基序。接下来,我们使用 SP1 特异性小干扰 RNA(siRNA)来证实 SP1 可能是 2A 上调 SREBP1a 的必需因素。此外,我们表明 MEK/ERK 途径参与了 2A 对 SREBP1a 的激活,并且使用特异性抑制剂 U0126 阻断该信号通路可减弱 2A 诱导的 SREBP1a 激活和脂质积累。最后,我们表明,用 siRNA 抑制 SREBP1 可减弱 CVB3 感染诱导的脂质积累,并降低病毒复制。此外,在 CVB3 感染期间,抑制 MEK/ERK 途径也会导致 SREBP1a 激活、脂质积累和病毒复制减少。总之,这些数据表明,CVB3 非结构 2A 蛋白通过涉及 MEK/ERK 信号通路和 SP1 转录因子的机制在转录水平上激活 SREBP1a,促进细胞内脂质积累并有利于病毒复制。柯萨奇病毒 B3(CVB3)感染是病毒性心肌炎的主要原因,但针对 CVB3 感染的有效疫苗和抗病毒疗法仍然缺乏。了解宿主与病毒之间的确切相互作用对于合理设计有效的治疗方法非常重要。在感染过程中,CVB3 破坏和利用宿主脂质代谢来促进过度的脂质积累,从而有利于病毒复制。SREBP1 是细胞脂质代谢的主要调节剂。在这里,我们报告一种病毒非结构蛋白 2A 上调并激活 SREBP1a。此外,我们发现抑制 SREBP1 可降低 CVB3 病毒复制。这些结果揭示了 2A 对 SREBP1a 表达的调节以及 SREBP1 在 CVB3 感染期间脂质积累和病毒复制中的作用。我们的研究结果为 2A 调节 SREBP1a 表达以及 SREBP1 在 CVB3 感染期间在脂质积累和病毒复制中的作用提供了新的认识。我们的发现为 CVB3 宿主相互作用提供了新的见解,并为这一重要病原体提供了一个潜在的新治疗靶点。

相似文献

1
CVB3 Nonstructural 2A Protein Modulates SREBP1a Signaling via the MEK/ERK Pathway.
J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01060-18. Print 2018 Dec 15.
2
MicroRNA-22-3p displaces critical host factors from the 5' UTR and inhibits the translation of Coxsackievirus B3 RNA.
J Virol. 2024 Feb 20;98(2):e0150423. doi: 10.1128/jvi.01504-23. Epub 2024 Jan 30.
4
Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation.
J Mol Cell Cardiol. 2015 Aug;85:155-67. doi: 10.1016/j.yjmcc.2015.05.021. Epub 2015 Jun 6.
7
A Kidnapping Story: How Coxsackievirus B3 and Its Host Cell Interact.
Cell Physiol Biochem. 2019;53(1):121-140. doi: 10.33594/000000125.
8
Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways.
Infect Genet Evol. 2015 Dec;36:46-54. doi: 10.1016/j.meegid.2015.08.026. Epub 2015 Aug 22.
9
Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication.
PLoS Pathog. 2017 Dec 8;13(12):e1006744. doi: 10.1371/journal.ppat.1006744. eCollection 2017 Dec.
10
TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1.
Cell Death Dis. 2022 Jul 11;13(7):592. doi: 10.1038/s41419-022-05027-w.

引用本文的文献

3
PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication.
mBio. 2024 Feb 14;15(2):e0319723. doi: 10.1128/mbio.03197-23. Epub 2024 Jan 23.
4
Cathelicidins Target HSP60 To Restrict CVB3 Transmission via Disrupting the Exosome and Reducing Cardiomyocyte Apoptosis.
J Virol. 2023 Mar 30;97(3):e0143322. doi: 10.1128/jvi.01433-22. Epub 2023 Mar 14.
5
Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids.
J Virol. 2022 Nov 23;96(22):e0121122. doi: 10.1128/jvi.01211-22. Epub 2022 Nov 7.
6
MORG1-A Negative Modulator of Renal Lipid Metabolism in Murine Diabetes.
Biomedicines. 2021 Dec 23;10(1):30. doi: 10.3390/biomedicines10010030.
7
Endosomal Cholesterol in Viral Infections - A Common Denominator?
Front Physiol. 2021 Nov 11;12:750544. doi: 10.3389/fphys.2021.750544. eCollection 2021.
8
Association of RDM1 with osteosarcoma progression via cell cycle and MEK/ERK signalling pathway regulation.
J Cell Mol Med. 2021 Aug;25(16):8039-8046. doi: 10.1111/jcmm.16735. Epub 2021 Jul 15.
10
Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes.
Signal Transduct Target Ther. 2020 Dec 11;5(1):287. doi: 10.1038/s41392-020-00360-y.

本文引用的文献

1
New Coxsackievirus 2A and 3C protease antibodies for virus detection and discovery of pathogenic mechanisms.
J Virol Methods. 2018 May;255:29-37. doi: 10.1016/j.jviromet.2018.02.001. Epub 2018 Feb 6.
2
SUMO1 depletion prevents lipid droplet accumulation and HCV replication.
Arch Virol. 2016 Jan;161(1):141-8. doi: 10.1007/s00705-015-2628-3. Epub 2015 Oct 8.
3
Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways.
Infect Genet Evol. 2015 Dec;36:46-54. doi: 10.1016/j.meegid.2015.08.026. Epub 2015 Aug 22.
4
Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.
PLoS One. 2015 Jul 31;10(7):e0133181. doi: 10.1371/journal.pone.0133181. eCollection 2015.
5
Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation.
J Mol Cell Cardiol. 2015 Aug;85:155-67. doi: 10.1016/j.yjmcc.2015.05.021. Epub 2015 Jun 6.
6
Coxsackievirus B3 replication and pathogenesis.
Future Microbiol. 2015;10(4):629-53. doi: 10.2217/fmb.15.5.
7
Stronger activation of SREBP-1a by nucleus-localized HBx.
Biochem Biophys Res Commun. 2015 May 8;460(3):561-5. doi: 10.1016/j.bbrc.2015.03.069. Epub 2015 Mar 20.
8
Ultrastructure of the replication sites of positive-strand RNA viruses.
Virology. 2015 May;479-480:418-33. doi: 10.1016/j.virol.2015.02.029. Epub 2015 Mar 6.
9
Death waits for no man--does it wait for a virus? How enteroviruses induce and control cell death.
Cytokine Growth Factor Rev. 2014 Oct;25(5):587-96. doi: 10.1016/j.cytogfr.2014.08.002. Epub 2014 Aug 15.
10
Generation of unique poliovirus RNA replication organelles.
mBio. 2014 Feb 25;5(2):e00833-13. doi: 10.1128/mBio.00833-13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验