Department of Microbiology and Molecular Genetics and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
mBio. 2014 Feb 25;5(2):e00833-13. doi: 10.1128/mBio.00833-13.
Poliovirus (PV), a model for interactions of picornaviruses with host cells, replicates its genomic RNA in association with cellular membranes. The origin of PV replication membranes has not been determined. Hypotheses about the origin of replication membranes, based largely on localization of viral proteins, include modification of coat protein complex I (COPI) and/or COPII secretory pathway vesicles and subversion of autophagic membranes. Here, we use an antibody against double-stranded RNA (dsRNA) to identify replication complexes by detection of dsRNA replication intermediates. dsRNA signal is dependent on virus genome replication and colocalizes with the viral integral membrane protein 3A, which is part of the RNA replication complex. We show that early in infection, dsRNA does not colocalize with a marker for autophagic vesicles, making it unlikely that autophagosomes contribute to the generation of PV RNA replication membranes. We also find that dsRNA does not colocalize with a marker of the COPII coat, Sec31, and, in fact, we demonstrate proteasome-dependent loss of full-length Sec31 during PV infection. These data indicate that COPII vesicles are an unlikely source of PV replication membranes. We show that the Golgi resident G-protein Arf1 and its associated guanine nucleotide exchange factor (GEF), GBF1, transiently colocalize with dsRNA early in infection. In uninfected cells, Arf1 nucleates COPI coat formation, although during infection the COPI coat itself does not colocalize with dsRNA. Phosphatidylinositol-4-phosphate, which is associated with enterovirus-induced vesicles, tightly colocalizes with Arf1/GBF1 throughout infection. Our data point to a noncanonical role for some of the COPI-generating machinery in producing unique replication surfaces for PV RNA replication. IMPORTANCE Picornaviruses are a diverse and major cause of human disease, and their genomes replicate in association with intracellular membranes. There are multiple hypotheses to explain the nature and origin of these membranes, and a complete understanding of the host requirements for membrane rearrangement would provide novel drug targets essential for viral genome replication. Here, we study the model picornavirus, poliovirus, and show that some, but not all, components of the cellular machinery required for retrograde traffic from the Golgi apparatus to the endoplasmic reticulum are transiently present at the sites of viral RNA replication. We also show that the full-length Sec31 protein, which has been suggested to be present on PV RNA replication membranes, is lost during infection in a proteasome-dependent manner. This study helps to reconcile multiple hypotheses about the origin of poliovirus replication membranes and points to known host cell protein complexes that would make likely drug targets to inhibit picornavirus infections.
脊髓灰质炎病毒 (PV) 是一种与宿主细胞相互作用的微小核糖核酸病毒模型,其基因组 RNA 与细胞膜结合进行复制。PV 复制膜的起源尚未确定。基于病毒蛋白定位的复制膜起源假说包括对衣壳蛋白复合物 I (COPI) 和/或 COPII 分泌途径小泡的修饰和对自噬膜的劫持。在这里,我们使用针对双链 RNA (dsRNA) 的抗体通过检测 dsRNA 复制中间体来识别复制复合物。dsRNA 信号依赖于病毒基因组复制,并与病毒整合膜蛋白 3A 共定位,3A 是 RNA 复制复合物的一部分。我们表明,在感染早期,dsRNA 与自噬小泡的标志物不共定位,这使得自噬体不太可能参与生成 PV RNA 复制膜。我们还发现 dsRNA 与 COPII 衣壳的标志物 Sec31 不共定位,事实上,我们证明在 PV 感染过程中全长 Sec31 依赖蛋白酶体丢失。这些数据表明 COPII 小泡不太可能是 PV 复制膜的来源。我们表明,高尔基体驻留 G 蛋白 Arf1 及其相关鸟嘌呤核苷酸交换因子 (GEF) GBF1 在感染早期与 dsRNA 短暂共定位。在未感染的细胞中,Arf1 引发 COPI 衣壳的形成,尽管在感染过程中 COPI 衣壳本身与 dsRNA 不共定位。与肠病毒诱导的小泡相关的磷酸肌醇 4-磷酸在整个感染过程中与 Arf1/GBF1 紧密共定位。我们的数据表明,在产生用于 PV RNA 复制的独特复制表面方面,一些 COPI 生成机制发挥了非典型作用。重要性微小核糖核酸病毒种类繁多,是人类疾病的主要病因,其基因组与细胞内膜结合进行复制。有多种假说可以解释这些膜的性质和起源,而对膜重排所需的宿主要求的全面了解将为病毒基因组复制提供新的药物靶点。在这里,我们研究了模式微小核糖核酸病毒脊髓灰质炎病毒,并表明细胞机制的一些但不是全部组成部分,该机制用于从高尔基体逆行运输到内质网,在病毒 RNA 复制部位短暂存在。我们还表明,全长 Sec31 蛋白(先前被认为存在于 PV RNA 复制膜上)在感染过程中以蛋白酶体依赖的方式丢失。这项研究有助于调和关于脊髓灰质炎病毒复制膜起源的多种假说,并指出了已知的宿主细胞蛋白复合物,这些复合物可能成为抑制微小核糖核酸病毒感染的潜在药物靶点。