Suppr超能文献

基于基因组尺度代谢模型模拟的多组学综合分析揭示了黑曲霉在工业酶生产条件下的全局细胞适应性。

Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition.

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

DSM Biotechnology Center, P.O. Box 1, 2600MA, Delft, The Netherlands.

出版信息

Sci Rep. 2018 Sep 26;8(1):14404. doi: 10.1038/s41598-018-32341-1.

Abstract

Oxygen limitation is regarded as a useful strategy to improve enzyme production by mycelial fungus like Aspergillus niger. However, the intracellular metabolic response of A. niger to oxygen limitation is still obscure. To address this, the metabolism of A. niger was studied using multi-omics integrated analysis based on the latest GEMs (genome-scale metabolic model), including metabolomics, fluxomics and transcriptomics. Upon sharp reduction of the oxygen supply, A. niger metabolism shifted to higher redox level status, as well as lower energy supply, down-regulation of genes for fatty acid synthesis and a rapid decrease of the specific growth rate. The gene expression of the glyoxylate bypass was activated, which was consistent with flux analysis using the A. niger GEMs iHL1210. The increasing flux of the glyoxylate bypass was assumed to reduce the NADH formation from TCA cycle and benefit maintenance of the cellular redox balance under hypoxic conditions. In addition, the relative fluxes of the EMP pathway were increased, which possibly relieved the energy demand for cell metabolism. The above multi-omics integrative analysis provided new insights on metabolic regulatory mechanisms of A. niger associated with enzyme production under oxygen-limited condition, which will benefit systematic design and optimization of the A. niger microbial cell factory.

摘要

氧限制被认为是提高丝状真菌如黑曲霉产酶的有效策略。然而,黑曲霉对氧限制的细胞内代谢反应仍不清楚。为了解决这个问题,基于最新的 GEMs(基因组规模代谢模型),采用多组学综合分析方法研究了黑曲霉的代谢,包括代谢组学、通量组学和转录组学。在供氧急剧减少的情况下,黑曲霉的代谢向更高的氧化还原水平状态以及更低的能量供应转变,脂肪酸合成基因下调,比生长速率迅速下降。乙醛酸旁路的基因表达被激活,这与使用黑曲霉 GEMs iHL1210 的通量分析一致。乙醛酸旁路通量的增加被认为可以减少 TCA 循环中 NADH 的形成,并有利于维持缺氧条件下的细胞氧化还原平衡。此外,EMP 途径的相对通量增加,这可能缓解了细胞代谢的能量需求。上述多组学综合分析为与缺氧条件下酶生产相关的黑曲霉代谢调控机制提供了新的见解,这将有利于黑曲霉微生物细胞工厂的系统设计和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/832b/6158188/9bab7de862a7/41598_2018_32341_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验