Suppr超能文献

工程辅因子代谢以提高黑曲霉中的蛋白质和糖化酶产量。

Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger.

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.

出版信息

Microb Cell Fact. 2020 Oct 23;19(1):198. doi: 10.1186/s12934-020-01450-w.

Abstract

BACKGROUND

Nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor ensuring intracellular redox balance, anabolism and cell growth in all living systems. Our recent multi-omics analyses of glucoamylase (GlaA) biosynthesis in the filamentous fungal cell factory Aspergillus niger indicated that low availability of NADPH might be a limiting factor for GlaA overproduction.

RESULTS

We thus employed the Design-Build-Test-Learn cycle for metabolic engineering to identify and prioritize effective cofactor engineering strategies for GlaA overproduction. Based on available metabolomics and C metabolic flux analysis data, we individually overexpressed seven predicted genes encoding NADPH generation enzymes under the control of the Tet-on gene switch in two A. niger recipient strains, one carrying a single and one carrying seven glaA gene copies, respectively, to test their individual effects on GlaA and total protein overproduction. Both strains were selected to understand if a strong pull towards glaA biosynthesis (seven gene copies) mandates a higher NADPH supply compared to the native condition (one gene copy). Detailed analysis of all 14 strains cultivated in shake flask cultures uncovered that overexpression of the gsdA gene (glucose 6-phosphate dehydrogenase), gndA gene (6-phosphogluconate dehydrogenase) and maeA gene (NADP-dependent malic enzyme) supported GlaA production on a subtle (10%) but significant level in the background strain carrying seven glaA gene copies. We thus performed maltose-limited chemostat cultures combining metabolome analysis for these three isolates to characterize metabolic-level fluctuations caused by cofactor engineering. In these cultures, overexpression of either the gndA or maeA gene increased the intracellular NADPH pool by 45% and 66%, and the yield of GlaA by 65% and 30%, respectively. In contrast, overexpression of the gsdA gene had a negative effect on both total protein and glucoamylase production.

CONCLUSIONS

This data suggests for the first time that increased NADPH availability can indeed underpin protein and especially GlaA production in strains where a strong pull towards GlaA biosynthesis exists. This data also indicates that the highest impact on GlaA production can be engineered on a genetic level by increasing the flux through the pentose phosphate pathway (gndA gene) followed by engineering the flux through the reverse TCA cycle (maeA gene). We thus propose that NADPH cofactor engineering is indeed a valid strategy for metabolic engineering of A. niger to improve GlaA production, a strategy which is certainly also applicable to the rational design of other microbial cell factories.

摘要

背景

烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是所有生命系统中确保细胞内氧化还原平衡、合成代谢和细胞生长的重要辅酶。我们最近对丝状真菌细胞工厂黑曲霉中葡糖淀粉酶(GlaA)生物合成的多组学分析表明,NADPH 的可用性低可能是 GlaA 过量生产的限制因素。

结果

因此,我们采用设计-构建-测试-学习循环进行代谢工程,以确定和优先考虑有效的辅酶工程策略,以实现 GlaA 的过量生产。基于可用的代谢组学和 C 代谢通量分析数据,我们分别在两个黑曲霉受体菌株中过表达了七个预测的编码 NADPH 生成酶的基因,这些基因受 Tet-on 基因开关的控制,一个菌株携带一个 glaA 基因拷贝,另一个菌株携带七个 glaA 基因拷贝,以测试它们对 GlaA 和总蛋白过量生产的单独影响。选择这两个菌株是为了了解在强烈偏向 glaA 生物合成(七个基因拷贝)的情况下,与天然条件(一个基因拷贝)相比,是否需要更高的 NADPH 供应。对在摇瓶培养中培养的所有 14 株菌的详细分析表明,过表达 gsdA 基因(葡萄糖 6-磷酸脱氢酶)、gndA 基因(6-磷酸葡萄糖酸脱氢酶)和 maeA 基因(NADP 依赖性苹果酸酶)在携带七个 glaA 基因拷贝的背景菌株中以微妙(10%)但显著的水平支持 GlaA 的生产。因此,我们在麦芽糖限制恒化器培养中进行了这些三种分离物的代谢组学分析,以表征辅酶工程引起的代谢水平波动。在这些培养物中,过表达 gndA 或 maeA 基因分别将细胞内 NADPH 池增加了 45%和 66%,并将 GlaA 的产量分别提高了 65%和 30%。相比之下,过表达 gsdA 基因对总蛋白和葡糖淀粉酶的生产都有负面影响。

结论

这一数据首次表明,增加 NADPH 的可用性确实可以支持在强烈偏向 GlaA 生物合成的菌株中蛋白质的生产,特别是 GlaA 的生产。这一数据还表明,通过戊糖磷酸途径(gndA 基因)增加通量,然后通过反向 TCA 循环(maeA 基因)工程通量,可在遗传水平上对 GlaA 的生产产生最大的影响。因此,我们提出 NADPH 辅酶工程确实是黑曲霉代谢工程提高 GlaA 生产的有效策略,这一策略也肯定适用于其他微生物细胞工厂的合理设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a597/7584080/652946238b14/12934_2020_1450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验