Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus de Fuente Nueva s/n, 18071, Granada, Spain.
Sci Rep. 2018 Sep 26;8(1):14399. doi: 10.1038/s41598-018-32709-3.
Traditionally, the internal morphology of crustacean larvae has been studied using destructive techniques such as dissection and microscopy. The present study combines advances in micro-computed tomography (micro-CT) and histology to study the internal morphology of decapod larvae, using the common spider crab (Maja brachydactyla Balss, 1922) as a model and resolving the individual limitations of these techniques. The synergy of micro-CT and histology allows the organs to be easily identified, revealing simultaneously the gross morphology (shape, size, and location) and histological organization (tissue arrangement and cell identification). Micro-CT shows mainly the exoskeleton, musculature, digestive and nervous systems, and secondarily the circulatory and respiratory systems, while histology distinguishes several cell types and confirms the organ identity. Micro-CT resolves a discrepancy in the literature regarding the nervous system of crab larvae. The major changes occur in the metamorphosis to the megalopa stage, specifically the formation of the gastric mill, the shortening of the abdominal nerve cord, the curving of the abdomen beneath the cephalothorax, and the development of functional pereiopods, pleopods, and lamellate gills. The combination of micro-CT and histology provides better results than either one alone.
传统上,甲壳动物幼虫的内部形态学是通过破坏性技术(如解剖和显微镜检查)进行研究的。本研究结合了微计算机断层扫描(micro-CT)和组织学的进展,以常见的蜘蛛蟹(Maja brachydactyla Balss,1922)为模型,解决了这些技术的个体局限性。micro-CT 和组织学的协同作用可以轻松识别器官,同时揭示其大体形态(形状、大小和位置)和组织学结构(组织排列和细胞鉴定)。micro-CT 主要显示外骨骼、肌肉、消化和神经系统,其次是循环和呼吸系统,而组织学则区分了几种细胞类型,并确认了器官的身份。micro-CT 解决了有关蟹幼虫神经系统的文献中的差异。主要变化发生在变态为大眼幼虫阶段,具体表现为胃磨的形成、腹部神经索的缩短、头胸甲下腹部的弯曲以及功能十足的步足、游泳足和片状鳃的发育。micro-CT 和组织学的结合比单独使用任何一种方法都能产生更好的结果。