3D 静电纺丝法制备 3D 聚己内酯宏观结构
Fabrication of 3D Polycaprolactone Macrostructures by 3D Electrospinning.
机构信息
School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
出版信息
ACS Biomater Sci Eng. 2024 Aug 12;10(8):5336-5351. doi: 10.1021/acsbiomaterials.4c00302. Epub 2024 May 22.
Building 3D electrospun macrostructures and monitoring the biological activities inside them are challenging. In this study, 3D fibrous polycaprolactone (PCL) macrostructures were successfully fabricated using in-house 3D electrospinning. The main factors supporting the 3D self-assembled nanofiber fabrication are the HPO additives, flow rate, and initial distance. The effects of solution concentration, solvent, HPO concentration, flow rate, initial distance, voltage, and nozzle speed on the 3D macrostructures were examined. The optimal conditions of 4 mL/h flow rate, 4 cm initial nozzle-collector distance, 14 kV voltage, and 1 mm/s nozzle speed provided a rapid buildup of cylinder macrostructures with 6 cm of diameter, reaching a final height of 16.18 ± 2.58 mm and a wall thickness of 3.98 ± 1.01 mm on one perimeter with uniform diameter across different sections (1.40 ± 1.10 μm average). Oxygen plasma treatment with 30-50 W for 5 min significantly improved the hydrophilicity of the PCL macrostructures, proving a suitable scaffold for in vitro cell cultures. Additionally, 3D images obtained by synchrotron radiation X-ray tomographic microscopy (SRXTM) presented cell penetration and cell growth within the scaffolds. This breakthrough in 3D electrospinning surpasses current scaffold fabrication limitations, opening new possibilities in various fields.
构建 3D 电纺宏观结构并监测其内部的生物活性具有挑战性。在这项研究中,使用内部 3D 电纺成功制造了 3D 纤维聚己内酯 (PCL) 宏观结构。支持 3D 自组装纳米纤维制造的主要因素是 HPO 添加剂、流速和初始距离。研究了溶液浓度、溶剂、HPO 浓度、流速、初始距离、电压和喷嘴速度对 3D 宏观结构的影响。优化条件为 4mL/h 的流速、4cm 的初始喷嘴-收集器距离、14kV 的电压和 1mm/s 的喷嘴速度,可快速构建直径为 6cm 的圆柱体宏观结构,最终高度为 16.18±2.58mm,壁厚为 3.98±1.01mm,在不同部位的直径均匀(平均 1.40±1.10μm)。用 30-50W 的氧气等离子体处理 5min 可显著提高 PCL 宏观结构的亲水性,证明其适合体外细胞培养。此外,同步辐射 X 射线断层摄影显微镜 (SRXTM) 获得的 3D 图像显示了细胞在支架内的穿透和生长。这项 3D 电纺技术的突破超越了当前支架制造的局限性,为各个领域开辟了新的可能性。