Suppr超能文献

tRNA 介导的+1 核糖体移码机制。

Mechanism of tRNA-mediated +1 ribosomal frameshifting.

机构信息

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322

出版信息

Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11226-11231. doi: 10.1073/pnas.1809319115. Epub 2018 Sep 27.

Abstract

Accurate translation of the genetic code is critical to ensure expression of proteins with correct amino acid sequences. Certain tRNAs can cause a shift out of frame (i.e., frameshifting) due to imbalances in tRNA concentrations, lack of tRNA modifications or insertions or deletions in tRNAs (called frameshift suppressors). Here, we determined the structural basis for how frameshift-suppressor tRNA (a derivative of tRNA) reprograms the mRNA frame to translate a 4-nt codon when bound to the bacterial ribosome. After decoding at the aminoacyl (A) site, the crystal structure of the anticodon stem-loop of tRNA bound in the peptidyl (P) site reveals ASL conformational changes that allow for recoding into the +1 mRNA frame. Furthermore, a crystal structure of full-length tRNA programmed in the P site shows extensive conformational rearrangements of the 30S head and body domains similar to what is observed in a translocation intermediate state containing elongation factor G (EF-G). The 30S movement positions tRNA toward the 30S exit (E) site disrupting key 16S rRNA-mRNA interactions that typically define the mRNA frame. In summary, this tRNA-induced 30S domain change in the absence of EF-G causes the ribosome to lose its grip on the mRNA and uncouples the canonical forward movement of the tRNAs during elongation.

摘要

准确翻译遗传密码对于确保蛋白质表达具有正确的氨基酸序列至关重要。某些 tRNA 可能会由于 tRNA 浓度失衡、tRNA 修饰缺乏或 tRNA 插入或缺失(称为移码抑制物)而导致移码(即移框)。在这里,我们确定了移码抑制物 tRNA(tRNA 的衍生物)如何重新编程 mRNA 框架以在与细菌核糖体结合时翻译 4 个核苷酸密码子的结构基础。在氨酰基(A)位点解码后,结合在肽酰基(P)位点的 tRNA 反密码子茎环的晶体结构揭示了 ASL 构象变化,从而允许重新编码到+1 mRNA 框架。此外,全长 tRNA 在 P 位点编程的晶体结构显示 30S 头部和主体结构域的广泛构象重排,类似于含有延伸因子 G(EF-G)的易位中间状态中观察到的构象重排。30S 的移动将 tRNA 定位到 30S 出口(E)位点,破坏了通常定义 mRNA 框架的关键 16S rRNA-mRNA 相互作用。总之,在没有 EF-G 的情况下,这种 tRNA 诱导的 30S 结构域变化导致核糖体失去对 mRNA 的控制,并在延伸过程中使 tRNA 的典型正向运动解耦。

相似文献

1
Mechanism of tRNA-mediated +1 ribosomal frameshifting.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11226-11231. doi: 10.1073/pnas.1809319115. Epub 2018 Sep 27.
2
Structural insights into translational recoding by frameshift suppressor tRNASufJ.
RNA. 2014 Dec;20(12):1944-54. doi: 10.1261/rna.046953.114. Epub 2014 Oct 28.
3
Mutations in domain IV of elongation factor EF-G confer -1 frameshifting.
RNA. 2021 Jan;27(1):40-53. doi: 10.1261/rna.077339.120. Epub 2020 Oct 2.
4
Dynamic pathways of -1 translational frameshifting.
Nature. 2014 Aug 21;512(7514):328-32. doi: 10.1038/nature13428. Epub 2014 Jun 11.
5
Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7813-7818. doi: 10.1073/pnas.1901310116. Epub 2019 Apr 1.
6
Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation.
Nat Commun. 2021 Jul 30;12(1):4644. doi: 10.1038/s41467-021-24911-1.
7
Twice exploration of tRNA +1 frameshifting in an elongation cycle of protein synthesis.
Nucleic Acids Res. 2021 Sep 27;49(17):10046-10060. doi: 10.1093/nar/gkab734.

引用本文的文献

1
Basis for selective drug evasion of an aminoglycoside-resistance ribosomal RNA modification.
Nat Commun. 2025 Aug 27;16(1):7992. doi: 10.1038/s41467-025-63278-5.
2
An RNA modification prevents extended codon-anticodon interactions from facilitating +1 frameshifting.
Nat Commun. 2025 Aug 11;16(1):7392. doi: 10.1038/s41467-025-62342-4.
3
Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.
Mol Ther Nucleic Acids. 2024 Aug 19;35(3):102313. doi: 10.1016/j.omtn.2024.102313. eCollection 2024 Sep 10.
4
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
5
Suppressor tRNA in gene therapy.
Sci China Life Sci. 2024 Oct;67(10):2120-2131. doi: 10.1007/s11427-024-2613-y. Epub 2024 Jun 24.
6
Mechanisms and Delivery of tRNA Therapeutics.
Chem Rev. 2024 Jun 26;124(12):7976-8008. doi: 10.1021/acs.chemrev.4c00142. Epub 2024 May 27.
7
Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
Chem Rev. 2024 May 22;124(10):6444-6500. doi: 10.1021/acs.chemrev.3c00894. Epub 2024 Apr 30.
8
Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt B):105-113. doi: 10.1016/j.semcdb.2023.06.003. Epub 2023 Jun 28.
9
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses.
Int J Mol Sci. 2023 Jan 25;24(3):2387. doi: 10.3390/ijms24032387.
10
Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome.
Nucleic Acids Res. 2023 Jan 25;51(2):919-934. doi: 10.1093/nar/gkac1211.

本文引用的文献

1
Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel.
Structure. 2018 Mar 6;26(3):437-445.e3. doi: 10.1016/j.str.2018.01.013. Epub 2018 Feb 15.
2
Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
Nucleic Acids Res. 2016 Sep 6;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub 2016 Jul 19.
3
Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.
Nat Struct Mol Biol. 2016 Apr;23(4):333-41. doi: 10.1038/nsmb.3177. Epub 2016 Feb 29.
4
Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA.
Nat Commun. 2015 May 26;6:7226. doi: 10.1038/ncomms8226.
5
Structural insights into translational recoding by frameshift suppressor tRNASufJ.
RNA. 2014 Dec;20(12):1944-54. doi: 10.1261/rna.046953.114. Epub 2014 Oct 28.
6
How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation.
Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030.
7
Molecular mechanics of 30S subunit head rotation.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13325-30. doi: 10.1073/pnas.1413731111. Epub 2014 Sep 3.
8
Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12740-5. doi: 10.1073/pnas.1409436111. Epub 2014 Aug 15.
9
Efficient splinted ligation of synthetic RNA using RNA ligase.
Methods Mol Biol. 2014;1126:137-49. doi: 10.1007/978-1-62703-980-2_10.
10
Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation.
Science. 2013 Jun 28;340(6140):1236086. doi: 10.1126/science.1236086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验