文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近红外二区荧光成像技术使用吲哚菁绿纳米颗粒。

NIR-II fluorescence imaging using indocyanine green nanoparticles.

机构信息

Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA.

出版信息

Sci Rep. 2018 Sep 27;8(1):14455. doi: 10.1038/s41598-018-32754-y.


DOI:10.1038/s41598-018-32754-y
PMID:30262808
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6160486/
Abstract

Fluorescence imaging in the second near-infrared window (NIR-II) holds promise for real-time deep tissue imaging. In this work, we investigated the NIR-II fluorescence properties of a liposomal formulation of indocyanine green (ICG), a FDA-approved dye that was recently shown to exhibit NIR-II fluorescence. Fluorescence spectra of liposomal-ICG were collected in phosphate-buffered saline (PBS) and plasma. Imaging studies in an Intralipid phantom were performed to determine penetration depth. In vivo imaging studies were performed to test real-time visualization of vascular structures in the hind limb and intracranial regions. Free ICG, NIR-I imaging, and cross-sectional imaging modalities (MRI and CT) were used as comparators. Fluorescence spectra demonstrated the strong NIR-II fluorescence of liposomal-ICG, similar to free ICG in plasma. In vitro studies demonstrated superior performance of liposomal-ICG over free ICG for NIR-II imaging of deep (≥4 mm) vascular mimicking structures. In vivo, NIR-II fluorescence imaging using liposomal-ICG resulted in significantly (p < 0.05) higher contrast-to-noise ratio compared to free ICG for extended periods of time, allowing visualization of hind limb and intracranial vasculature for up to 4 hours post-injection. In vivo comparisons demonstrated higher vessel conspicuity with liposomal-ICG-enhanced NIR-II imaging compared to NIR-I imaging.

摘要

近红外二区(NIR-II)荧光成像是实时深层组织成像的一种有前途的方法。在这项工作中,我们研究了一种吲哚菁绿(ICG)脂质体制剂的 NIR-II 荧光特性,ICG 是一种最近被证明具有 NIR-II 荧光的 FDA 批准的染料。在磷酸盐缓冲盐水(PBS)和血浆中收集了脂质体-ICG 的荧光光谱。在 Intralipid 体模中进行了成像研究,以确定穿透深度。进行了体内成像研究,以测试在下肢和颅内区域实时可视化血管结构的能力。游离 ICG、NIR-I 成像和横截面成像模式(MRI 和 CT)被用作比较器。荧光光谱表明,脂质体-ICG 具有很强的 NIR-II 荧光,类似于游离 ICG 在血浆中的荧光。体外研究表明,与游离 ICG 相比,脂质体-ICG 在 NIR-II 成像深层(≥4mm)血管模拟结构方面具有更好的性能。在体内,使用脂质体-ICG 的 NIR-II 荧光成像导致与游离 ICG 相比,在较长时间内显著(p<0.05)提高了对比噪声比,从而可以在注射后长达 4 小时内可视化下肢和颅内血管。体内比较表明,与 NIR-I 成像相比,脂质体-ICG 增强的 NIR-II 成像可提高血管的明显度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/22ac1bfbfe01/41598_2018_32754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/743d43f5bf70/41598_2018_32754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/c580196faaf4/41598_2018_32754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/004f77a2d094/41598_2018_32754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/d46033c474f2/41598_2018_32754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/85b77bf24fc2/41598_2018_32754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/1c9f8ccf330a/41598_2018_32754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/109b3e56629a/41598_2018_32754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/22ac1bfbfe01/41598_2018_32754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/743d43f5bf70/41598_2018_32754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/c580196faaf4/41598_2018_32754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/004f77a2d094/41598_2018_32754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/d46033c474f2/41598_2018_32754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/85b77bf24fc2/41598_2018_32754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/1c9f8ccf330a/41598_2018_32754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/109b3e56629a/41598_2018_32754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68d/6160486/22ac1bfbfe01/41598_2018_32754_Fig8_HTML.jpg

相似文献

[1]
NIR-II fluorescence imaging using indocyanine green nanoparticles.

Sci Rep. 2018-9-27

[2]
Indocyanine green fluorescence in second near-infrared (NIR-II) window.

PLoS One. 2017-11-9

[3]
Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis.

Theranostics. 2020

[4]
The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma.

PLoS One. 2017-7-24

[5]
Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo.

Biochemistry. 2014-2-17

[6]
Imaging the urinary pathways in mice by liposomal indocyanine green.

Nanomedicine. 2015-7

[7]
Optimization of liposomal indocyanine green for imaging of the urinary pathways and a proof of concept in a pig model.

Surg Endosc. 2017-8-4

[8]
Zwitterionic nanoparticles from indocyanine green dimerization for imaging-guided cancer phototherapy.

Acta Biomater. 2024-9-1

[9]
Indocyanine green-based fluorescence imaging improved by deep learning.

J Biophotonics. 2023-11

[10]
Multispectrum Indocyanine Green Videography for Visualizing Brain Vascular Pathology.

World Neurosurg. 2019-8-20

引用本文的文献

[1]
Clinical Integration of NIR-II Fluorescence Imaging for Cancer Surgery: A Translational Evaluation of Preclinical and Intraoperative Systems.

Cancers (Basel). 2025-8-17

[2]
Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy.

Research (Wash D C). 2025-1-17

[3]
In vivo fluorescence imaging of nanocarriers in near-infrared window II based on aggregation-caused quenching.

J Nanobiotechnology. 2024-8-14

[4]
NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery.

Biosensors (Basel). 2024-5-30

[5]
A human serum albumin-indocyanine green complex offers improved tumor identification in fluorescence-guided surgery.

Transl Cancer Res. 2024-1-31

[6]
Advancement of Near Infrared-II Organic Dyes in Bioimaging.

Cureus. 2023-10-25

[7]
Novel albumin-binding multifunctional probe for synergistic enhancement of FL/MR dual-modal imaging and photothermal therapy.

Front Chem. 2023-8-1

[8]
Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment.

Exploration (Beijing). 2021-9-1

[9]
Proteinoid Polymers and Nanocapsules for Cancer Diagnostics, Therapy and Theranostics: In Vitro and In Vivo Studies.

J Funct Biomater. 2023-4-11

[10]
Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection.

J Biomed Opt. 2023-9

本文引用的文献

[1]
Molecular Fluorescence and Photoacoustic Imaging in the Second Near-Infrared Optical Window Using Organic Contrast Agents.

Adv Biosyst. 2018-5

[2]
Novel benzo-bis(1,2,5-thiadiazole) fluorophores for NIR-II imaging of cancer.

Chem Sci. 2016-9-1

[3]
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

Proc Natl Acad Sci U S A. 2018-4-6

[4]
Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy: A Comparative Study.

Adv Mater. 2018-2-19

[5]
A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy.

Theranostics. 2018-1-1

[6]
Indocyanine green fluorescence in second near-infrared (NIR-II) window.

PLoS One. 2017-11-9

[7]
Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

Placenta. 2017-6-15

[8]
Broadband Absorbing Semiconducting Polymer Nanoparticles for Photoacoustic Imaging in Second Near-Infrared Window.

Nano Lett. 2017-7-3

[9]
Intraoperative Localization of Rectal Tumors Using Liposomal Indocyanine Green.

Surg Innov. 2017-4

[10]
Multimodal Magnetic Resonance and Near-Infrared-Fluorescent Imaging of Intraperitoneal Ovarian Cancer Using a Dual-Mode-Dual-Gadolinium Liposomal Contrast Agent.

Sci Rep. 2016-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索