文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过饮食和波长选择最小化临床前成像中的近红外自发荧光。

Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection.

机构信息

Northeastern University, Department of Chemical Engineering, Boston, Massachusetts, United States.

Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States.

出版信息

J Biomed Opt. 2023 Sep;28(9):094805. doi: 10.1117/1.JBO.28.9.094805. Epub 2023 Apr 5.


DOI:10.1117/1.JBO.28.9.094805
PMID:37035712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10075996/
Abstract

SIGNIFICANCE: Preclinical fluorescence imaging with NIR-I (700 to 900 nm) illumination and short-wave infrared or NIR-II (1000 to 1700 nm) emission increases tissue penetration depth and improves resolution through decreased scattering. Background autofluorescence decreases signal-to-background ratios (SBR) in fluorescence imaging; maximizing SBR will further improve the impact of deep tissue imaging. AIM: The impact of rodent diet, illumination wavelength, and emission range on the background fluorescence and contrast agent SBR were determined to assist with the experimental design of future imaging studies. APPROACH: Following illumination with 670, 760, or 808 nm, autofluorescence in the NIR-I ( ), NIR-II ( ), and NIR-II LP ( ) regions was assessed in mice fed chow or a purified diet using an IR VIVO preclinical imager (Photon, Etc.). Comparison of the SBR of liver-localized indocyanine green in the various imaging conditions indicated when gut autofluorescence was a problematic confounder. RESULTS: Mice fed chow exhibit high levels of background autofluorescence in the gastrointestinal tract and, to a lesser extent, skin when illuminated with 670 nm light for NIR-I imaging (700 to 975 nm), interfering with the identification of fluorescently labeled tissue. Background autofluorescence was reduced by more than two orders of magnitude by any of the following changes: (1) purified diet; (2) excitation with 760 or 808 nm illumination; or (3) emission in the NIR-II (1000 to 1600 or 1250 to 1600 nm). Although the SBR was generally sufficient for feature identification except when imaging of chow-fed mice with 670 nm excitation and NIR-I emission, switching to a purified diet, using longer excitation wavelengths, or using longer emission wavelengths improved SBR significantly. CONCLUSIONS: Systematic comparison of imaging conditions and diet highlights the reduction in autofluorescence and increase in SBR enabled by intentional choices in the experimental parameters including diet, excitation wavelength, and emission wavelength range.

摘要

意义:使用近红外-I(700 至 900nm)照明和短波红外或近红外-II(1000 至 1700nm)发射的临床前荧光成像增加了组织穿透深度,并通过减少散射提高了分辨率。背景自发荧光降低了荧光成像中的信号与背景比(SBR);最大限度地提高 SBR 将进一步提高深部组织成像的效果。

目的:确定啮齿动物饮食、照明波长和发射范围对背景荧光和造影剂 SBR 的影响,以协助未来成像研究的实验设计。

方法:在使用 670、760 或 808nm 照明后,使用近红外-I( )、近红外-II( )和近红外-II LP( )区域的自发荧光在食用标准饮食或纯化饮食的小鼠中进行评估,使用 IR VIVO 临床前成像仪(Photon,Etc.)。比较不同成像条件下肝脏定位吲哚菁绿的 SBR,表明肠道自发荧光是一个有问题的混杂因素。

结果:当用 670nm 光进行近红外-I 成像(700 至 975nm)时,喂食标准饮食的小鼠在胃肠道中表现出高水平的背景自发荧光,在皮肤中也有较低程度的背景自发荧光,干扰了荧光标记组织的识别。通过以下任何一种变化都可以将背景自发荧光降低两个数量级以上:(1)纯化饮食;(2)用 760 或 808nm 照明激发;或(3)在近红外-II(1000 至 1600nm 或 1250 至 1600nm)中发射。尽管 SBR 通常足以进行特征识别,除非用 670nm 激发和近红外-I 发射对喂食标准饮食的小鼠进行成像,但是切换到纯化饮食、使用较长的激发波长或使用较长的发射波长会显著提高 SBR。

结论:对成像条件和饮食的系统比较突出了通过实验参数的有意选择(包括饮食、激发波长和发射波长范围)降低自发荧光和提高 SBR 的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/0c3e67e11346/JBO-028-094805-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/cba629e9e28b/JBO-028-094805-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/bc36e86a6e78/JBO-028-094805-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/13095f4e0408/JBO-028-094805-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/77fbc2134209/JBO-028-094805-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/e2afb5b71fa4/JBO-028-094805-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/51f593b9ae5a/JBO-028-094805-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/0c3e67e11346/JBO-028-094805-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/cba629e9e28b/JBO-028-094805-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/bc36e86a6e78/JBO-028-094805-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/13095f4e0408/JBO-028-094805-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/77fbc2134209/JBO-028-094805-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/e2afb5b71fa4/JBO-028-094805-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/51f593b9ae5a/JBO-028-094805-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746a/10075996/0c3e67e11346/JBO-028-094805-g007.jpg

相似文献

[1]
Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection.

J Biomed Opt. 2023-9

[2]
Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy.

ACS Nano. 2018-8-1

[3]
High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging.

Proc Natl Acad Sci U S A. 2022-4-12

[4]
Near-infrared intraoperative molecular imaging with conventional neurosurgical microscope can be improved with narrow band "boost" excitation.

Acta Neurochir (Wien). 2019-9-3

[5]
Indocyanine green fluorescence in second near-infrared (NIR-II) window.

PLoS One. 2017-11-9

[6]
Deep learning for in vivo near-infrared imaging.

Proc Natl Acad Sci U S A. 2021-1-5

[7]
Three-dimensional cellular imaging in thick biological tissue with confocal detection of one-photon fluorescence in the near-infrared II window.

J Biophotonics. 2019-4-1

[8]
In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.

Skin Res Technol. 2012-6-22

[9]
Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics.

Biosensors (Basel). 2022-12-5

[10]
Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.

Proc Natl Acad Sci U S A. 2018-6-11

引用本文的文献

[1]
Clinical Integration of NIR-II Fluorescence Imaging for Cancer Surgery: A Translational Evaluation of Preclinical and Intraoperative Systems.

Cancers (Basel). 2025-8-17

[2]
Development of a Transcriptional Biosensor for Hydrogen Sulfide That Functions under Aerobic and Anaerobic Conditions.

ACS Synth Biol. 2025-6-20

[3]
Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging.

J Imaging. 2025-3-18

[4]
Development of a Transcriptional Biosensor for Hydrogen Sulfide that Functions under Aerobic and Anaerobic Conditions.

bioRxiv. 2025-2-19

[5]
Systematic comparison of fluorescence imaging in the near-infrared and shortwave-infrared spectral range using clinical tumor samples containing cetuximab-IRDye800CW.

J Biomed Opt. 2025-1

[6]
Depth detection limit of a fluorescent object in tissue-like medium with background emission in continuous-wave measurements: a phantom study.

J Biomed Opt. 2024-9

[7]
Multiplexed Shortwave Infrared Imaging Highlights Anatomical Structures in Mice.

Angew Chem Int Ed Engl. 2024-10-21

[8]
Multiplexed Short-wave Infrared Imaging Highlights Anatomical Structures in Mice.

bioRxiv. 2024-1-30

[9]
Host-microbiome interactions in distinct subsets of preterm labor and birth.

iScience. 2023-10-28

本文引用的文献

[1]
Atomic-Precision Gold Clusters for NIR-II Imaging.

Adv Mater. 2019-10-1

[2]
In Vivo Biosensing Using Resonance Energy Transfer.

Biosensors (Basel). 2019-6-3

[3]
NIR-II fluorescence imaging using indocyanine green nanoparticles.

Sci Rep. 2018-9-27

[4]
Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.

Proc Natl Acad Sci U S A. 2018-4-6

[5]
Next-generation optical imaging with short-wave infrared quantum dots.

Nat Biomed Eng. 2017

[6]
Light in diagnosis, therapy and surgery.

Nat Biomed Eng. 2017

[7]
Overcoming Autofluorescence: Long-Lifetime Infrared Nanoparticles for Time-Gated In Vivo Imaging.

Adv Mater. 2016-10-6

[8]
Indocyanine green kinetics to assess liver function: Ready for a clinical dynamic assessment in major liver surgery?

World J Hepatol. 2016-3-8

[9]
In vivo autofluorescence in the biological windows: the role of pigmentation.

J Biophotonics. 2016-10

[10]
Image-guided cancer surgery using near-infrared fluorescence.

Nat Rev Clin Oncol. 2013-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索