State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, P. R. China.
PLoS Genet. 2018 Sep 28;14(9):e1007629. doi: 10.1371/journal.pgen.1007629. eCollection 2018 Sep.
Ammonia is a major signal that regulates nitrogen fixation in most diazotrophs. Regulation of nitrogen fixation by ammonia in the Gram-negative diazotrophs is well-characterized. In these bacteria, this regulation occurs mainly at the level of nif (nitrogen fixation) gene transcription, which requires a nif-specific activator, NifA. Although Gram-positive and diazotrophic Paenibacilli have been extensively used as a bacterial fertilizer in agriculture, how nitrogen fixation is regulated in response to nitrogen availability in these bacteria remains unclear. An indigenous GlnR and GlnR/TnrA-binding sites in the promoter region of the nif cluster are conserved in these strains, indicating the role of GlnR as a regulator of nitrogen fixation. In this study, we for the first time reveal that GlnR of Paenibacillus polymyxa WLY78 is essentially required for nif gene transcription under nitrogen limitation, whereas both GlnR and glutamine synthetase (GS) encoded by glnA within glnRA operon are required for repressing nif expression under excess nitrogen. Dimerization of GlnR is necessary for binding of GlnR to DNA. GlnR in P. polymyxa WLY78 exists in a mixture of dimers and monomers. The C-terminal region of GlnR monomer is an autoinhibitory domain that prevents GlnR from binding DNA. Two GlnR-biding sites flank the -35/-10 regions of the nif promoter of the nif operon (nifBHDKENXhesAnifV). The GlnR-binding site Ⅰ (located upstream of -35/-10 regions of the nif promoter) is specially required for activating nif transcription, while GlnR-binding siteⅡ (located downstream of -35/-10 regions of the nif promoter) is for repressing nif expression. Under nitrogen limitation, GlnR dimer binds to GlnR-binding siteⅠ in a weak and transient association way and then activates nif transcription. During excess nitrogen, glutamine binds to and feedback inhibits GS by forming the complex FBI-GS. The FBI-GS interacts with the C-terminal domain of GlnR and stabilizes the binding affinity of GlnR to GlnR-binding site Ⅱ and thus represses nif transcription.
氨是调节大多数固氮菌氮固定的主要信号。革兰氏阴性固氮菌中氨对氮固定的调节已得到充分研究。在这些细菌中,这种调节主要发生在 nif(氮固定)基因转录水平,这需要一种 nif 特异性激活剂 NifA。尽管革兰氏阳性和固氮芽孢杆菌被广泛用作农业中的细菌肥料,但这些细菌如何响应氮可用性调节氮固定仍不清楚。在这些菌株中,nif 簇启动子区域中的内源性 GlnR 和 GlnR/TnrA 结合位点保守存在,表明 GlnR 作为氮固定的调节剂的作用。在这项研究中,我们首次揭示了多粘类芽孢杆菌 WLY78 中的 GlnR 对于氮限制下 nif 基因转录是必需的,而 GlnR 和谷氨酰胺合酶(GS)(由 glnRA 操纵子中的 glnA 编码)都需要在过量氮下抑制 nif 表达。GlnR 二聚化对于 GlnR 与 DNA 的结合是必需的。多粘类芽孢杆菌 WLY78 中的 GlnR 存在于二聚体和单体的混合物中。GlnR 单体的 C 端区域是一个自动抑制结构域,阻止 GlnR 与 DNA 结合。GlnR 结合位点位于 nif 启动子的-35/-10 区域(nifBHDKENXhesAnifV)两侧。GlnR 结合位点 Ⅰ(位于 nif 启动子的-35/-10 区域上游)专门用于激活 nif 转录,而 GlnR 结合位点 Ⅱ(位于 nif 启动子的-35/-10 区域下游)用于抑制 nif 表达。在氮限制下,GlnR 二聚体以弱而短暂的方式结合到 GlnR 结合位点 Ⅰ上,然后激活 nif 转录。在过量氮下,谷氨酰胺与 FBI-GS 形成复合物,反馈抑制 GS。FBI-GS 与 GlnR 的 C 端结构域相互作用,并稳定 GlnR 与 GlnR 结合位点 Ⅱ的结合亲和力,从而抑制 nif 转录。