Shen Yuanbo, Maggiolo Ailiena O, Zhang Tianzheng, Warmack Rebeccah A
Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA 91125, USA.
Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA 91125, USA.
Structure. 2025 Jul 8. doi: 10.1016/j.str.2025.06.007.
Single particle cryoelectron microscopy (cryoEM) and cryoelectron tomography (cryoET) are powerful methods for unveiling unique and functionally relevant structural states. Aided by mass spectrometry and machine learning, they promise to facilitate the visual exploration of proteomes. Leveraging visual proteomics, we interrogate structures isolated from a complex cellular milieu by cryoEM to identify and classify molecular structures and complexes de novo. By comparing three automated model building programs, CryoID, DeepTracer, and ModelAngelo, we determine the identity of six distinct oligomeric protein complexes from partially purified extracts of the nitrogen-fixing bacterium Azotobacter vinelandii using both anaerobic and aerobic cryoEM, including two original oligomeric structures. Overall, by allowing the study of near-native oligomeric protein states, cryoEM-enabled visual proteomics reveals unique structures that correspond to relevant species observed in situ.
单颗粒冷冻电子显微镜(cryoEM)和冷冻电子断层扫描(cryoET)是揭示独特且与功能相关的结构状态的强大方法。借助质谱和机器学习,它们有望促进对蛋白质组的可视化探索。利用可视化蛋白质组学,我们通过冷冻电镜研究从复杂细胞环境中分离出的结构,以从头识别和分类分子结构及复合物。通过比较三种自动模型构建程序CryoID、DeepTracer和ModelAngelo,我们使用厌氧和需氧冷冻电镜从固氮菌维涅兰德固氮菌的部分纯化提取物中确定了六种不同的寡聚蛋白复合物的身份,包括两种原始的寡聚结构。总体而言,通过允许研究接近天然的寡聚蛋白状态,基于冷冻电镜的可视化蛋白质组学揭示了与原位观察到的相关物种相对应的独特结构。