Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Dec;1863(12):1478-1487. doi: 10.1016/j.bbalip.2018.09.009. Epub 2018 Sep 25.
In microalgae, triacylglycerol (TAG) biosynthesis occurs by parallel pathways involving both the chloroplast and endoplasmic reticulum. A better understanding of contribution of each pathway to TAG assembly facilitates enhanced TAG production via rational genetic engineering of microalgae. Here, using a UPLC-MS(/MS) coupled with TLC-GC-based lipidomic platform, the early response of the major glycerolipids to nitrogen stress was analyzed at both the cellular and chloroplastidic levels in the model green alga Chlamydomonas reinhardtii. Subcellular lipidomic analysis demonstrated that TAG was accumulated exclusively outside the chloroplast, and remained unaltered inside the chloroplast after 4 h of nitrogen starvation. This study ascertained the existence of the glycolipid, digalactosyldiacylglycerol (DGDG), outside the chloroplast and the betaine lipid, diacylglycerol-N,N,N-trimethylhomoserine (DGTS), inside the chloroplast. The newly synthesized DGDG and DGTS prominently increased at the extra-chloroplastidic compartments and served as the major precursors for TAG biosynthesis. In particular, DGDG contributed to the extra-chloroplastidic TAG assembly in form of diacylglycerol (DAG) and DGTS in form of acyl groups. The chloroplastidic membrane lipid, monogalactosyldiacylglycerol (MGDG), was proposed to primarily offer DAG for TAG formation outside the chloroplast. This study provides valuable insights into the subcellular glycerolipidomics and unveils the acyl flux into the extra-chloroplastidic TAG in microalgae.
在微藻中,三酰基甘油 (TAG) 的生物合成通过涉及叶绿体和内质网的平行途径发生。更好地了解每条途径对 TAG 组装的贡献有助于通过合理的藻类遗传工程来提高 TAG 的产量。在这里,使用 UPLC-MS(/MS) 与基于 TLC-GC 的脂质组学平台,在模式绿藻莱茵衣藻的细胞和叶绿体水平上分析了主要甘油脂质对氮胁迫的早期响应。亚细胞脂质组学分析表明,TAG 仅在叶绿体外部积累,并且在氮饥饿 4 小时后在叶绿体内部保持不变。这项研究证实了糖脂二半乳糖二酰基甘油 (DGDG) 存在于叶绿体之外,并且甜菜碱脂质二酰基甘油-N,N,N-三甲基高丝氨酸 (DGTS) 存在于叶绿体内部。新合成的 DGDG 和 DGTS 在质体外隔室中明显增加,作为 TAG 生物合成的主要前体。特别是,DGDG 以二酰基甘油 (DAG) 的形式和 DGTS 以酰基的形式为质体外的 TAG 组装做出贡献。叶绿体膜脂质单半乳糖二酰基甘油 (MGDG) 被认为主要为叶绿体外部的 TAG 形成提供 DAG。这项研究为亚细胞甘油脂质组学提供了有价值的见解,并揭示了微藻中质体外 TAG 的酰基通量。