Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
University College Cork, Cork, Ireland.
J Physiol. 2018 Dec;596(24):6191-6203. doi: 10.1113/JP276973. Epub 2018 Oct 28.
Ascent to high altitude imposes an acid-base challenge in which renal compensation is integral for maintaining pH homeostasis, facilitating acclimatization and helping prevent mountain sicknesses. The time-course and extent of plasticity of this important renal response during incremental ascent to altitude is unclear. We created a novel index that accurately quantifies renal acid-base compensation, which may have laboratory, fieldwork and clinical applications. Using this index, we found that renal compensation increased and plateaued after 5 days of incremental altitude exposure, suggesting plasticity in renal acid-base compensation mechanisms. The time-course and extent of plasticity in renal responsiveness may predict severity of altitude illness or acclimatization at higher or more prolonged stays at altitude.
Ascent to high altitude, and the associated hypoxic ventilatory response, imposes an acid-base challenge, namely chronic hypocapnia and respiratory alkalosis. The kidneys impart a relative compensatory metabolic acidosis through the elimination of bicarbonate (HCO ) in urine. The time-course and extent of plasticity of the renal response during incremental ascent is unclear. We developed an index of renal reactivity (RR), indexing the relative change in arterial bicarbonate concentration ([HCO ] ) (i.e. renal response) against the relative change in arterial pressure of CO ( ) (i.e. renal stimulus) during incremental ascent to altitude ( ). We aimed to assess whether: (i) RR magnitude was inversely correlated with relative changes in arterial pH (ΔpH ) with ascent and (ii) RR increased over time and altitude exposure (i.e. plasticity). During ascent to 5160 m over 10 days in the Nepal Himalaya, arterial blood was drawn from the radial artery for measurement of blood gas/acid-base variables in lowlanders at 1045/1400 m and after 1 night of sleep at 3440 m (day 3), 3820 m (day 5), 4240 m (day 7) and 5160 m (day 10) during ascent. At 3820 m and higher, RR significantly increased and plateaued compared to 3440 m (P < 0.04), suggesting plasticity in renal acid-base compensations. At all altitudes, we observed a strong negative correlation (r ≤ -0.71; P < 0.001) between RR and ΔpH from baseline. Renal compensation plateaued after 5 days of altitude exposure, despite subsequent exposure to higher altitudes. The time-course, extent of plasticity and plateau in renal responsiveness may predict severity of altitude illness or acclimatization at higher or more prolonged stays at altitude.
升高到高海拔地区会带来酸碱平衡挑战,肾脏的代偿对于维持 pH 平衡、促进适应和帮助预防高原病至关重要。在逐渐升高到高海拔地区的过程中,这种重要的肾脏反应的可塑性的时间进程和程度尚不清楚。我们创建了一个新的指数,可以准确地量化肾脏的酸碱代偿,这可能具有实验室、野外工作和临床应用的价值。使用这个指数,我们发现肾脏代偿在 5 天的递增海拔暴露后增加并达到平台期,表明肾脏酸碱代偿机制具有可塑性。肾脏反应的时间进程和程度的可预测性可能预测在更高或更长时间停留高原时的高原病严重程度或适应情况。
升高到高海拔地区,以及随之而来的低氧性通气反应,会带来酸碱平衡挑战,即慢性低碳酸血症和呼吸性碱中毒。肾脏通过尿液中排出碳酸氢盐(HCO )来产生相对代偿性代谢性酸中毒。在逐渐升高的过程中,肾脏反应的可塑性的时间进程和程度尚不清楚。我们开发了一种肾脏反应性指数(RR),该指数索引了动脉碳酸氢盐浓度([HCO ])的相对变化(即肾脏反应)与动脉二氧化碳分压( )的相对变化(即肾脏刺激)在递增到高海拔地区时的关系( )。我们旨在评估以下两个问题:(i)RR 幅度是否与升高过程中动脉 pH(ΔpH)的相对变化呈反比关系;(ii)RR 是否随着时间和海拔暴露而增加(即可塑性)。在尼泊尔喜马拉雅山脉的 10 天内升高到 5160 米的过程中,在低地海拔 1045/1400 米处和在 3440 米海拔处过夜后的第 1 天(第 3 天)、3820 米(第 5 天)、4240 米(第 7 天)和 5160 米(第 10 天),从桡动脉抽取动脉血,用于测量血液气体/酸碱变量。在 3820 米及以上海拔,RR 与 3440 米相比显著增加并达到平台期(P < 0.04),表明肾脏酸碱代偿具有可塑性。在所有海拔高度,我们观察到 RR 与从基线开始的ΔpH 之间存在强烈的负相关(r ≤ -0.71;P < 0.001)。尽管随后暴露在更高的海拔高度,肾脏代偿在 5 天的海拔暴露后达到平台期。肾脏反应的时间进程、可塑性和平台期可能预测在更高或更长时间停留高原时的高原病严重程度或适应情况。