Suppr超能文献

基于单元素超声信号的腕部和手指手势识别:与单通道表面肌电图的比较。

Wrist and Finger Gesture Recognition With Single-Element Ultrasound Signals: A Comparison With Single-Channel Surface Electromyogram.

出版信息

IEEE Trans Biomed Eng. 2019 May;66(5):1277-1284. doi: 10.1109/TBME.2018.2872593. Epub 2018 Oct 1.

Abstract

With the ability to detect volumetric changes of contracting muscles, ultrasound (US) was a potential technique in the field of human-machine interface. Compared to the US imaging (B-mode US), the signal from a static single-element US transducer, A-mode US, was a more cost-effective and convenient way toward the real-world application, particularly the wearables. This study compared the performance of the single-channel A-mode US with single-channel surface electromyogram (sEMG) signals, one of the most popular signal modalities for wrist and finger gesture recognition. We demonstrated that A-mode US outperformed sEMG in six out of nine gestures recognition, while sEMG was superior to A-mode US on the detection of the rest state. We also demonstrated that, through feature space analysis, the advantage of A-mode US over sEMG for gesture recognition was due to its superior ability in detecting information from deep musculature. This study presented the clear complementary advantages between A-mode US and sEMG, indicating the possibility of fusing two signal modalities for the gesture recognition applications.

摘要

超声(US)凭借能够检测收缩肌肉的容积变化的能力,成为人机界面领域的一种潜在技术。与 US 成像(B 型 US)相比,来自静态单元件 US 换能器的信号,即 A 型 US,是一种更具成本效益和便捷的走向现实应用的方式,特别是在可穿戴设备中。本研究比较了单通道 A 型 US 与表面肌电图(sEMG)信号的性能,后者是腕部和手指运动识别中最受欢迎的信号模态之一。我们证明了在九种手势识别中,A 型 US 在六种手势识别中优于 sEMG,而在检测静止状态时,sEMG 优于 A 型 US。我们还证明,通过特征空间分析,A 型 US 在手势识别方面优于 sEMG,是因为其具有检测深层肌肉信息的卓越能力。本研究清楚地呈现了 A 型 US 和 sEMG 之间的互补优势,表明融合两种信号模态用于手势识别应用的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验