IEEE Trans Biomed Eng. 2019 May;66(5):1297-1308. doi: 10.1109/TBME.2018.2872726. Epub 2018 Sep 28.
It is largely unknown whether there is functional role difference between cortical gyral and sulcal regions. Recent advancements in neuroimaging studies demonstrate clear difference of structural connection profiles in gyral and sulcal areas, suggesting possible functional role difference in these convex and concave cortical regions. To explore and confirm such possible functional difference, we design and apply a powerful deep learning model of convolutional neural networks (CNN) that has been proven to be superior in learning discriminative and meaningful patterns on fMRI. By using the CNN model, gyral and sulcal fMRI signals are learned and predicted, and the prediction performance is adopted to demonstrate the functional difference between gyri and sulci. By using the Human Connectome Project (HCP) fMRI data and macaque brain fMRI data, an average of 83% and 90% classification accuracy has been achieved to separate gyral/sulcal HCP task fMRI signals at the population and individual subject level, respectively; 81% and 86% classification accuracy for resting state fMRI signals at the group and individual subject level, respectively. In addition, 78% classification accuracy has been achieved to separate gyral/sulcal resting state fMRI signals in macaque brains. Importantly, further analysis reveals that the discriminative features that are learned by CNNs to differentiate gyral/sulcal fMRI signals can be meaningfully interpreted, thus unveiling the fundamental functional difference between cortical gyri and sulci. That is, gyri are more global functional integration centers with simpler lower frequency signal components, while sulci are more local processing units with more complex higher frequency signal components.
大脑皮质脑回和脑沟区域的功能作用是否存在差异在很大程度上尚未可知。最近的神经影像学研究进展表明,脑回和脑沟区域的结构连接模式存在明显差异,这表明这些凸面和凹面皮质区域可能具有不同的功能作用。为了探索和证实这种可能的功能差异,我们设计并应用了一种强大的卷积神经网络(CNN)深度学习模型,该模型已被证明在 fMRI 上学习有区别和有意义的模式方面具有优势。通过使用 CNN 模型,我们对脑回和脑沟的 fMRI 信号进行学习和预测,并采用预测性能来证明脑回和脑沟之间的功能差异。通过使用人类连接组计划(HCP)fMRI 数据和猕猴大脑 fMRI 数据,在群体和个体水平上,分别实现了平均 83%和 90%的分类准确率,以区分 HCP 任务 fMRI 信号的脑回/脑沟;在组和个体水平上,分别实现了平均 81%和 86%的静息态 fMRI 信号的分类准确率;在猕猴大脑中,静息态 fMRI 信号的分类准确率达到了 78%。重要的是,进一步的分析表明,CNN 学习到的区分脑回/脑沟 fMRI 信号的判别特征具有有意义的解释,从而揭示了大脑皮质脑回和脑沟之间的基本功能差异。也就是说,脑回是更具全局功能整合中心,具有更简单的低频信号成分,而脑沟则是更具局部处理单元,具有更复杂的高频信号成分。