Suppr超能文献

大脑皮质被二等分,分为两个完全不同的脑回和脑沟功能单位。

The Cerebral Cortex is Bisectionally Segregated into Two Fundamentally Different Functional Units of Gyri and Sulci.

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, China.

Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Cereb Cortex. 2019 Sep 13;29(10):4238-4252. doi: 10.1093/cercor/bhy305.

Abstract

The human cerebral cortex is highly folded into diverse gyri and sulci. Accumulating evidences suggest that gyri and sulci exhibit anatomical, morphological, and connectional differences. Inspired by these evidences, we performed a series of experiments to explore the frequency-specific differences between gyral and sulcal neural activities from resting-state and task-based functional magnetic resonance imaging (fMRI) data. Specifically, we designed a convolutional neural network (CNN) based classifier, which can differentiate gyral and sulcal fMRI signals with reasonable accuracies. Further investigations of learned CNN models imply that sulcal fMRI signals are more diverse and more high frequency than gyral signals, suggesting that gyri and sulci truly play different functional roles. These differences are significantly associated with axonal fiber wiring and cortical thickness patterns, suggesting that these differences might be deeply rooted in their structural and cellular underpinnings. Further wavelet entropy analyses demonstrated the validity of CNN-based findings. In general, our collective observations support a new concept that the cerebral cortex is bisectionally segregated into 2 functionally different units of gyri and sulci.

摘要

人类大脑皮层高度折叠成不同的脑回和脑沟。越来越多的证据表明,脑回和脑沟在解剖结构、形态和连接上存在差异。受这些证据的启发,我们进行了一系列实验,从静息态和任务态功能磁共振成像 (fMRI) 数据中探索脑回和脑沟神经活动的频率特异性差异。具体来说,我们设计了一个基于卷积神经网络 (CNN) 的分类器,可以合理准确地区分脑回和脑沟 fMRI 信号。对学习到的 CNN 模型的进一步研究表明,脑沟 fMRI 信号比脑回信号更加多样化和高频,这表明脑回和脑沟确实发挥着不同的功能作用。这些差异与轴突纤维布线和皮质厚度模式显著相关,表明这些差异可能深深植根于它们的结构和细胞基础。进一步的小波熵分析证明了基于 CNN 的发现的有效性。总的来说,我们的综合观察支持了一个新的概念,即大脑皮层被分为两个功能上不同的单位,即脑回和脑沟。

相似文献

2
Anatomy-Guided Spatio-Temporal Graph Convolutional Networks (AG-STGCNs) for Modeling Functional Connectivity Between Gyri and Sulci Across Multiple Task Domains.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7435-7445. doi: 10.1109/TNNLS.2022.3194733. Epub 2024 Jun 3.
3
Deep Learning Models Unveiled Functional Difference Between Cortical Gyri and Sulci.
IEEE Trans Biomed Eng. 2019 May;66(5):1297-1308. doi: 10.1109/TBME.2018.2872726. Epub 2018 Sep 28.
4
Frequency-specific functional difference between gyri and sulci in naturalistic paradigm fMRI.
Brain Struct Funct. 2024 Mar;229(2):431-442. doi: 10.1007/s00429-023-02746-4. Epub 2024 Jan 9.
5
Modeling functional difference between gyri and sulci within intrinsic connectivity networks.
Cereb Cortex. 2023 Feb 7;33(4):933-947. doi: 10.1093/cercor/bhac111.
6
A functional model of cortical gyri and sulci.
Brain Struct Funct. 2014 Jul;219(4):1473-91. doi: 10.1007/s00429-013-0581-z. Epub 2013 May 21.
7
Elucidating functional differences between cortical gyri and sulci via sparse representation HCP grayordinate fMRI data.
Brain Res. 2017 Oct 1;1672:81-90. doi: 10.1016/j.brainres.2017.07.018. Epub 2017 Jul 28.
8
Regularity and variability of functional brain connectivity characteristics between gyri and sulci under naturalistic stimulus.
Comput Biol Med. 2024 Jan;168:107747. doi: 10.1016/j.compbiomed.2023.107747. Epub 2023 Nov 23.
9
Gyral-sulcal contrast in intrinsic functional brain networks across task performances.
Brain Imaging Behav. 2021 Jun;15(3):1483-1498. doi: 10.1007/s11682-020-00347-x.
10
Temporal Variability of Cortical Gyral-Sulcal Resting State Functional Activity Correlates With Fluid Intelligence.
Front Neural Circuits. 2019 May 15;13:36. doi: 10.3389/fncir.2019.00036. eCollection 2019.

引用本文的文献

1
Multi-task machine learning reveals the functional neuroanatomy fingerprint of mental processing.
bioRxiv. 2025 Jul 5:2023.11.30.569385. doi: 10.1101/2023.11.30.569385.
2
Advances in functional magnetic resonance imaging-based brain function mapping: a deep learning perspective.
Psychoradiology. 2025 Apr 29;5:kkaf007. doi: 10.1093/psyrad/kkaf007. eCollection 2025.
3
Cortical Morphological Networks Differ Between Gyri and Sulci.
Neurosci Bull. 2025 Jan;41(1):46-60. doi: 10.1007/s12264-024-01262-7. Epub 2024 Jul 23.
4
Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior.
Psychoradiology. 2021 Mar 25;1(1):23-41. doi: 10.1093/psyrad/kkab002. eCollection 2021 Mar.
5
Sulcal Morphometry Predicts Mild Cognitive Impairment Conversion to Alzheimer's Disease.
J Alzheimers Dis. 2024;99(1):177-190. doi: 10.3233/JAD-231192.
6
Frequency-specific functional difference between gyri and sulci in naturalistic paradigm fMRI.
Brain Struct Funct. 2024 Mar;229(2):431-442. doi: 10.1007/s00429-023-02746-4. Epub 2024 Jan 9.
7
Temporal fingerprints of cortical gyrification in marmosets and humans.
Cereb Cortex. 2023 Aug 23;33(17):9802-9814. doi: 10.1093/cercor/bhad245.
9
Differential Patterns of Gyral and Sulcal Morphological Changes During Normal Aging Process.
Front Aging Neurosci. 2021 Feb 3;13:625931. doi: 10.3389/fnagi.2021.625931. eCollection 2021.
10
Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution.
Cereb Cortex. 2021 Jan 1;31(1):463-482. doi: 10.1093/cercor/bhaa237.

本文引用的文献

1
A Cortical Folding Pattern-Guided Model of Intrinsic Functional Brain Networks in Emotion Processing.
Front Neurosci. 2018 Aug 21;12:575. doi: 10.3389/fnins.2018.00575. eCollection 2018.
2
Denser Growing Fiber Connections Induce 3-hinge Gyral Folding.
Cereb Cortex. 2018 Mar 1;28(3):1064-1075. doi: 10.1093/cercor/bhx227.
3
Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex.
Front Comput Neurosci. 2017 Aug 15;11:76. doi: 10.3389/fncom.2017.00076. eCollection 2017.
4
Elucidating functional differences between cortical gyri and sulci via sparse representation HCP grayordinate fMRI data.
Brain Res. 2017 Oct 1;1672:81-90. doi: 10.1016/j.brainres.2017.07.018. Epub 2017 Jul 28.
5
Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
IEEE Trans Med Imaging. 2018 Jul;37(7):1551-1561. doi: 10.1109/TMI.2017.2715285. Epub 2017 Jun 15.
6
Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data.
Neuroimage. 2017 May 15;152:538-550. doi: 10.1016/j.neuroimage.2017.03.023. Epub 2017 Mar 15.
7
Mechanisms of circumferential gyral convolution in primate brains.
J Comput Neurosci. 2017 Jun;42(3):217-229. doi: 10.1007/s10827-017-0637-9. Epub 2017 Mar 7.
8
Nuisance Regression of High-Frequency Functional Magnetic Resonance Imaging Data: Denoising Can Be Noisy.
Brain Connect. 2017 Feb;7(1):13-24. doi: 10.1089/brain.2016.0441. Epub 2017 Jan 5.
9
Fast fMRI can detect oscillatory neural activity in humans.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6679-E6685. doi: 10.1073/pnas.1608117113. Epub 2016 Oct 11.
10
Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1183-1192. doi: 10.1109/TBME.2016.2598728. Epub 2016 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验