IEEE Trans Biomed Eng. 2019 May;66(5):1337-1345. doi: 10.1109/TBME.2018.2872896. Epub 2018 Oct 1.
This paper reports a platform for real-time monitoring and treatment of biofilm formation on three-dimensional biomedical device surfaces.
We utilize a flexible platform consisting of gold interdigitated electrodes patterned on a polyimide substrate. The device was integrated onto the interior of a urinary catheter and characterization was performed in a custom-developed flow system. Biofilm growth was monitored via impedance change at 100 Hz ac with a 50 mV signal amplitude.
A 30% impedance decrease over 24 h corresponded to Escherichia coli biofilm formation. The platform also enabled removal of the biofilm through the bioelectric effect; a low concentration of antibiotic combined with the applied ac voltage signal led to a synergistic reduction in biofilm resulting in a 12% increase in impedance. Biomass characterization via crystal violet staining confirmed that the impedance detection results correlate with changes in the amount of biofilm biomass on the sensor. We also demonstrated integration with a chip-based impedance converter to enable miniaturization and allow in situ wireless implementation. A 5% impedance decrease measured with the impedance converter corresponded to biofilm growth, replicating the trend measured with the potentiostat.
This platform represents a promising solution for biofilm infection management in diverse vulnerable environments.
Biofilms are the dominant mode of growth for microorganisms, where bacterial cells colonize hydrated surfaces and lead to recurring infections. Due to the inaccessible nature of the environments where biofilms grow and their increased tolerance of antimicrobials, identification, and removal on medical devices poses a challenge.
本文介绍了一种用于实时监测和治疗三维生物医学设备表面生物膜形成的平台。
我们利用由聚酰亚胺基底上的金叉指电极组成的柔性平台。该装置集成到导尿管内部,并在定制的流动系统中进行了表征。通过在 100 Hz 交流下用 50 mV 信号幅度进行阻抗变化监测生物膜生长。
在 24 小时内,阻抗降低 30%对应于大肠杆菌生物膜的形成。该平台还通过生物电场效应去除生物膜;低浓度的抗生素与施加的交流电压信号结合导致生物膜协同减少,从而使阻抗增加 12%。通过结晶紫染色进行生物量表征证实,阻抗检测结果与传感器上生物膜生物量的变化相关。我们还展示了与基于芯片的阻抗转换器的集成,以实现小型化并允许原位无线实现。用阻抗转换器测量的 5%阻抗降低对应于生物膜生长,复制了与电位计测量的趋势。
该平台为生物膜感染管理在各种脆弱环境中提供了一种有前途的解决方案。
生物膜是微生物的主要生长方式,细菌细胞在水合表面定植并导致反复感染。由于生物膜生长的环境难以接近以及它们对抗生素的增加耐受性,因此在医疗器械上识别和去除生物膜是一个挑战。