Xiao Xiangyun, Zhou Yanqing, Wang Hui, Yang Xubo
IEEE Trans Vis Comput Graph. 2020 Mar;26(3):1454-1465. doi: 10.1109/TVCG.2018.2873375. Epub 2018 Oct 1.
Solving a large-scale Poisson system is computationally expensive for most of the Eulerian fluid simulation applications. We propose a novel machine learning-based approach to accelerate this process. At the heart of our approach is a deep convolutional neural network (CNN), with the capability of predicting the solution (pressure) of a Poisson system given the discretization structure and the intermediate velocities as input. Our system consists of four main components, namely, a deep neural network to solve the large linear equations, a geometric structure to describe the spatial hierarchies of the input vector, a Principal Component Analysis (PCA) process to reduce the dimension of input in training, and a novel loss function to control the incompressibility constraint. We have demonstrated the efficacy of our approach by simulating a variety of high-resolution smoke and liquid phenomena. In particular, we have shown that our approach accelerates the projection step in a conventional Eulerian fluid simulator by two orders of magnitude. In addition, we have also demonstrated the generality of our approach by producing a diversity of animations deviating from the original datasets.
对于大多数欧拉流体模拟应用来说,求解大规模泊松系统在计算上成本高昂。我们提出一种基于机器学习的新颖方法来加速这一过程。我们方法的核心是一个深度卷积神经网络(CNN),它能够在给定离散化结构和中间速度作为输入的情况下预测泊松系统的解(压力)。我们的系统由四个主要组件组成,即用于求解大型线性方程的深度神经网络、用于描述输入向量空间层次结构的几何结构、用于在训练中降低输入维度的主成分分析(PCA)过程,以及用于控制不可压缩性约束的新颖损失函数。我们通过模拟各种高分辨率烟雾和液体现象证明了我们方法的有效性。特别是,我们已经表明我们的方法将传统欧拉流体模拟器中的投影步骤加速了两个数量级。此外,我们还通过生成与原始数据集不同类型的动画展示了我们方法的通用性。