Suppr超能文献

基于深度学习方法的分子动力学模拟中溶剂化力的计算。

Calculation of solvation force in molecular dynamics simulation by deep-learning method.

机构信息

Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

Biophys J. 2024 Sep 3;123(17):2830-2838. doi: 10.1016/j.bpj.2024.02.029. Epub 2024 Mar 4.

Abstract

Electrostatic calculations are generally used in studying the thermodynamics and kinetics of biomolecules in solvent. Generally, this is performed by solving the Poisson-Boltzmann equation on a large grid system, a process known to be time consuming. In this study, we developed a deep neural network to predict the decomposed solvation free energies and forces of all atoms in a molecule. To train the network, the internal coordinates of the molecule were used as the input data, and the solvation free energies along with transformed atomic forces from the Poisson-Boltzmann equation were used as labels. Both the training and prediction tasks were accelerated on GPU. Formal tests demonstrated that our method can provide reasonable predictions for small molecules when the network is well-trained with its simulation data. This method is suitable for processing lots of snapshots of molecules in a long trajectory. Moreover, we applied this method in the molecular dynamics simulation with enhanced sampling. The calculated free energy landscape closely resembled that obtained from explicit solvent simulations.

摘要

静电计算通常用于研究溶剂中生物分子的热力学和动力学。通常,这是通过在大型网格系统上求解泊松-玻尔兹曼方程来完成的,这是一个众所周知的耗时过程。在这项研究中,我们开发了一种深度神经网络来预测分子中所有原子的分解溶剂化自由能和力。为了训练网络,使用分子的内部坐标作为输入数据,并使用泊松-玻尔兹曼方程的溶剂化自由能和转换后的原子力作为标签。训练和预测任务都在 GPU 上加速。正式测试表明,当网络使用其模拟数据进行良好训练时,该方法可以为小分子提供合理的预测。该方法适用于处理长轨迹中大量分子快照。此外,我们将该方法应用于增强采样的分子动力学模拟。计算得到的自由能景观与从显式溶剂模拟中获得的自由能景观非常相似。

相似文献

6
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

6
Deep learning methods for molecular representation and property prediction.深度学习方法在分子表示和性质预测中的应用。
Drug Discov Today. 2022 Dec;27(12):103373. doi: 10.1016/j.drudis.2022.103373. Epub 2022 Sep 24.
7
MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo.MLIMC:基于机器学习的隐式溶剂蒙特卡罗方法
Chi J Chem Phys. 2021 Dec 27;34(6):683-694. doi: 10.1063/1674-0068/cjcp2109150.
8
Protein p Prediction with Machine Learning.基于机器学习的蛋白质p预测
ACS Omega. 2021 Dec 7;6(50):34823-34831. doi: 10.1021/acsomega.1c05440. eCollection 2021 Dec 21.
10
Machine-learning methods for ligand-protein molecular docking.基于机器学习的配体-蛋白分子对接方法。
Drug Discov Today. 2022 Jan;27(1):151-164. doi: 10.1016/j.drudis.2021.09.007. Epub 2021 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验