National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA.
Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD, 20892, USA.
Nat Commun. 2018 Oct 3;9(1):4061. doi: 10.1038/s41467-018-06382-z.
Gene regulatory networks (GRNs) describe regulatory relationships between transcription factors (TFs) and their target genes. Computational methods to infer GRNs typically combine evidence across different conditions to infer context-agnostic networks. We develop a method, Network Reprogramming using EXpression (NetREX), that constructs a context-specific GRN given context-specific expression data and a context-agnostic prior network. NetREX remodels the prior network to obtain the topology that provides the best explanation for expression data. Because NetREX utilizes prior network topology, we also develop PriorBoost, a method that evaluates a prior network in terms of its consistency with the expression data. We validate NetREX and PriorBoost using the "gold standard" E. coli GRN from the DREAM5 network inference challenge and apply them to construct sex-specific Drosophila GRNs. NetREX constructed sex-specific Drosophila GRNs that, on all applied measures, outperform networks obtained from other methods indicating that NetREX is an important milestone toward building more accurate GRNs.
基因调控网络 (GRN) 描述了转录因子 (TF) 和其靶基因之间的调控关系。推断 GRN 的计算方法通常结合不同条件下的证据来推断无上下文的网络。我们开发了一种方法,即使用表达信息的网络重编程 (NetREX),该方法给定特定上下文的表达数据和无上下文的先验网络,构建特定上下文的 GRN。NetREX 对先验网络进行重构,以获得能够为表达数据提供最佳解释的拓扑结构。由于 NetREX 利用了先验网络拓扑结构,我们还开发了 PriorBoost,这是一种根据表达数据的一致性来评估先验网络的方法。我们使用 DREAM5 网络推断挑战中的“黄金标准”大肠杆菌 GRN 来验证 NetREX 和 PriorBoost,并将它们应用于构建性别的果蝇 GRN。NetREX 构建的性别特异性果蝇 GRN 在所有应用的指标上都优于从其他方法获得的网络,这表明 NetREX 是构建更准确的 GRN 的重要里程碑。