文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SAILoR:基于结构的逻辑规则推理。

SAILoR: Structure-Aware Inference of Logic Rules.

机构信息

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

出版信息

PLoS One. 2024 Jun 11;19(6):e0304102. doi: 10.1371/journal.pone.0304102. eCollection 2024.


DOI:10.1371/journal.pone.0304102
PMID:38861487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11166287/
Abstract

Boolean networks provide an effective mechanism for describing interactions and dynamics of gene regulatory networks (GRNs). Deriving accurate Boolean descriptions of GRNs is a challenging task. The number of experiments is usually much smaller than the number of genes. In addition, binarization leads to a loss of information and inconsistencies arise in binarized time-series data. The inference of Boolean networks from binarized time-series data alone often leads to complex and overfitted models. To obtain relevant Boolean models of gene regulatory networks, inference methods could incorporate data from multiple sources and prior knowledge in terms of general network structure and/or exact interactions. We propose the Boolean network inference method SAILoR (Structure-Aware Inference of Logic Rules). SAILoR incorporates time-series gene expression data in combination with provided reference networks to infer accurate Boolean models. SAILoR automatically extracts topological properties from reference networks. These can describe a more general structure of the GRN or can be more precise and describe specific interactions. SAILoR infers a Boolean network by learning from both continuous and binarized time-series data. It navigates between two main objectives, topological similarity to reference networks and correspondence with gene expression data. By incorporating the NSGA-II multi-objective genetic algorithm, SAILoR relies on the wisdom of crowds. Our results indicate that SAILoR can infer accurate and biologically relevant Boolean descriptions of GRNs from both a static and a dynamic perspective. We show that SAILoR improves the static accuracy of the inferred network compared to the network inference method dynGENIE3. Furthermore, we compared the performance of SAILoR with other Boolean network inference approaches including Best-Fit, REVEAL, MIBNI, GABNI, ATEN, and LogBTF. We have shown that by incorporating prior knowledge about the overall network structure, SAILoR can improve the structural correctness of the inferred Boolean networks while maintaining dynamic accuracy. To demonstrate the applicability of SAILoR, we inferred context-specific Boolean subnetworks of female Drosophila melanogaster before and after mating.

摘要

布尔网络为描述基因调控网络(GRN)的相互作用和动态提供了有效的机制。推导出 GRN 的准确布尔描述是一项具有挑战性的任务。实验的数量通常远小于基因的数量。此外,二值化会导致信息丢失,并且在二值时间序列数据中会出现不一致。仅从二值时间序列数据推断布尔网络通常会导致复杂且过度拟合的模型。为了获得相关的基因调控网络布尔模型,可以根据一般网络结构和/或确切的相互作用,从多个来源和先验知识推断布尔网络。我们提出了布尔网络推理方法 SAILoR(基于结构的逻辑规则推理)。SAILoR 将时间序列基因表达数据与提供的参考网络结合起来,以推断准确的布尔模型。SAILoR 自动从参考网络中提取拓扑属性。这些属性可以描述 GRN 的更一般结构,也可以更精确并描述特定的相互作用。SAILoR 通过从连续和二值时间序列数据中学习来推断布尔网络。它在两个主要目标之间进行导航,即与参考网络的拓扑相似性和与基因表达数据的对应关系。通过合并 NSGA-II 多目标遗传算法,SAILoR 依赖于群体的智慧。我们的结果表明,SAILoR 可以从静态和动态两个角度推断出 GRN 的准确且具有生物学意义的布尔描述。我们表明,与 dynGENIE3 网络推断方法相比,SAILoR 提高了推断网络的静态准确性。此外,我们将 SAILoR 的性能与其他布尔网络推断方法(包括 Best-Fit、REVEAL、MIBNI、GABNI、ATEN 和 LogBTF)进行了比较。我们表明,通过合并关于整体网络结构的先验知识,SAILoR 可以提高推断的布尔网络的结构正确性,同时保持动态准确性。为了展示 SAILoR 的适用性,我们在雌性果蝇交配前后推断了特定于上下文的布尔子网。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/3c715d468095/pone.0304102.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/d056e3a9ab60/pone.0304102.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/31a9db303205/pone.0304102.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/fefed85a9fc3/pone.0304102.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/c4cb60b4b008/pone.0304102.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/b4812f192552/pone.0304102.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/a6b3537e95ae/pone.0304102.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/245052ce3158/pone.0304102.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/29b591efc8f4/pone.0304102.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/e0e6e85a37a3/pone.0304102.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/71f18ffa6714/pone.0304102.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/91d56a8a52ca/pone.0304102.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/b3c3cdb8b28e/pone.0304102.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/3c715d468095/pone.0304102.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/d056e3a9ab60/pone.0304102.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/31a9db303205/pone.0304102.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/fefed85a9fc3/pone.0304102.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/c4cb60b4b008/pone.0304102.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/b4812f192552/pone.0304102.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/a6b3537e95ae/pone.0304102.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/245052ce3158/pone.0304102.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/29b591efc8f4/pone.0304102.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/e0e6e85a37a3/pone.0304102.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/71f18ffa6714/pone.0304102.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/91d56a8a52ca/pone.0304102.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/b3c3cdb8b28e/pone.0304102.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11166287/3c715d468095/pone.0304102.g013.jpg

相似文献

[1]
SAILoR: Structure-Aware Inference of Logic Rules.

PLoS One. 2024

[2]
LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.

Bioinformatics. 2023-5-4

[3]
Review and assessment of Boolean approaches for inference of gene regulatory networks.

Heliyon. 2022-8-9

[4]
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.

BMC Syst Biol. 2018-12-14

[5]
LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.

BMC Bioinformatics. 2020-7-20

[6]
LogicGep: Boolean networks inference using symbolic regression from time-series transcriptomic profiling data.

Brief Bioinform. 2024-5-23

[7]
An algebra-based method for inferring gene regulatory networks.

BMC Syst Biol. 2014-3-26

[8]
A Boolean network inference from time-series gene expression data using a genetic algorithm.

Bioinformatics. 2018-9-1

[9]
A novel mutual information-based Boolean network inference method from time-series gene expression data.

PLoS One. 2017-2-8

[10]
Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.

BMC Syst Biol. 2012-8-28

引用本文的文献

[1]
Correction: SAILoR: Structure-aware inference of logic rules.

PLoS One. 2025-3-5

本文引用的文献

[1]
Preponderance of generalized chain functions in reconstructed Boolean models of biological networks.

Sci Rep. 2024-3-20

[2]
A meta-analysis of Boolean network models reveals design principles of gene regulatory networks.

Sci Adv. 2024-1-12

[3]
GatekeepR: an R Shiny application for the identification of nodes with high dynamic impact in Boolean networks.

Bioinformatics. 2024-1-2

[4]
MICFuzzy: A maximal information content based fuzzy approach for reconstructing genetic networks.

PLoS One. 2023

[5]
LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.

Bioinformatics. 2023-5-4

[6]
Boolean network sketches: a unifying framework for logical model inference.

Bioinformatics. 2023-4-3

[7]
Time series transcriptome analysis implicates the circadian clock in the female's response to sex peptide.

Proc Natl Acad Sci U S A. 2023-1-31

[8]
Knowledge of the perturbation design is essential for accurate gene regulatory network inference.

Sci Rep. 2022-10-3

[9]
Review and assessment of Boolean approaches for inference of gene regulatory networks.

Heliyon. 2022-8-9

[10]
GRNbenchmark - a web server for benchmarking directed gene regulatory network inference methods.

Nucleic Acids Res. 2022-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索