Suppr超能文献

脊椎动物胚胎后轴伸长的动力学和机制。

Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo.

机构信息

Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.

出版信息

Cell Mol Life Sci. 2019 Jan;76(1):89-98. doi: 10.1007/s00018-018-2927-4. Epub 2018 Oct 3.

Abstract

During development, the vertebrate embryo undergoes significant morphological changes which lead to its future body form and functioning organs. One of these noticeable changes is the extension of the body shape along the antero-posterior (A-P) axis. This A-P extension, while taking place in multiple embryonic tissues of the vertebrate body, involves the same basic cellular behaviors: cell proliferation, cell migration (of new progenitors from a posterior stem zone), and cell rearrangements. However, the nature and the relative contribution of these different cellular behaviors to A-P extension appear to vary depending upon the tissue in which they take place and on the stage of embryonic development. By focusing on what is known in the neural and mesodermal tissues of the bird embryo, I review the influences of cellular behaviors in posterior tissue extension. In this context, I discuss how changes in distinct cell behaviors can be coordinated at the tissue level (and between tissues) to synergize, build, and elongate the posterior part of the embryonic body. This multi-tissue framework does not only concern axis elongation, as it could also be generalized to morphogenesis of any developing organs.

摘要

在发育过程中,脊椎动物胚胎经历了显著的形态变化,导致其未来的身体形态和功能器官。这些显著变化之一是身体形状沿前后(A-P)轴的延伸。这种 A-P 延伸虽然发生在脊椎动物身体的多个胚胎组织中,但涉及相同的基本细胞行为:细胞增殖、细胞迁移(新祖细胞从前部干细胞区迁移)和细胞重排。然而,这些不同细胞行为对 A-P 延伸的性质和相对贡献似乎因发生的组织和胚胎发育阶段而异。通过关注鸟类胚胎的神经和中胚层组织中已知的内容,我回顾了细胞行为对后部组织延伸的影响。在这种情况下,我讨论了如何在组织水平(和组织之间)协调不同的细胞行为变化,以协同、构建和延长胚胎身体的后部。这个多组织框架不仅涉及轴的延伸,还可以推广到任何发育器官的形态发生。

相似文献

1
Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo.
Cell Mol Life Sci. 2019 Jan;76(1):89-98. doi: 10.1007/s00018-018-2927-4. Epub 2018 Oct 3.
2
Multi-scale quantification of tissue behavior during amniote embryo axis elongation.
Development. 2017 Dec 1;144(23):4462-4472. doi: 10.1242/dev.150557. Epub 2017 Aug 23.
3
Mechanics of Anteroposterior Axis Formation in Vertebrates.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:259-283. doi: 10.1146/annurev-cellbio-100818-125436. Epub 2019 Aug 14.
4
[A non directional cell migration gradient in the presomitic mesoderm contributes to axis elongation in chicken embryos].
Biol Aujourdhui. 2011;205(2):95-103. doi: 10.1051/jbio/2011014. Epub 2011 Aug 11.
6
Formation and segmentation of the vertebrate body axis.
Annu Rev Cell Dev Biol. 2013;29:1-26. doi: 10.1146/annurev-cellbio-101011-155703. Epub 2013 Jun 26.
8
Shaping the vertebrate body plan by polarized embryonic cell movements.
Science. 2002 Dec 6;298(5600):1950-4. doi: 10.1126/science.1079478.
9
Emergent morphogenesis: elastic mechanics of a self-deforming tissue.
J Biomech. 2010 Jan 5;43(1):63-70. doi: 10.1016/j.jbiomech.2009.09.010. Epub 2009 Oct 8.

引用本文的文献

1
Changes in cellular composition shape the inductive properties of Hensen's Node.
Nat Commun. 2025 Aug 22;16(1):7824. doi: 10.1038/s41467-025-63154-2.
2
Extracellular volume expansion drives vertebrate axis elongation.
Curr Biol. 2025 Feb 24;35(4):843-853.e6. doi: 10.1016/j.cub.2024.12.051. Epub 2025 Jan 28.
3
Spinal cord elongation enables proportional regulation of the zebrafish posterior body.
Development. 2025 Jan 1;152(1). doi: 10.1242/dev.204438. Epub 2025 Jan 9.
4
Programming the elongation of mammalian cell aggregates with synthetic gene circuits.
bioRxiv. 2024 Dec 11:2024.12.11.627621. doi: 10.1101/2024.12.11.627621.
5
Mechanics of Anteroposterior Axis Formation in Vertebrates.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:259-283. doi: 10.1146/annurev-cellbio-100818-125436. Epub 2019 Aug 14.

本文引用的文献

1
A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
Nature. 2018 Sep;561(7723):401-405. doi: 10.1038/s41586-018-0479-2. Epub 2018 Sep 5.
2
The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate.
Development. 2018 May 8;145(9):dev157487. doi: 10.1242/dev.157487.
4
Models of convergent extension during morphogenesis.
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1). doi: 10.1002/wdev.293. Epub 2017 Sep 14.
5
Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock.
Genes Dev. 2017 Jul 15;31(14):1406-1416. doi: 10.1101/gad.303123.117.
6
Multi-scale quantification of tissue behavior during amniote embryo axis elongation.
Development. 2017 Dec 1;144(23):4462-4472. doi: 10.1242/dev.150557. Epub 2017 Aug 23.
7
Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors.
Dev Cell. 2017 Sep 11;42(5):514-526.e7. doi: 10.1016/j.devcel.2017.07.021. Epub 2017 Aug 17.
8
Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry.
Dev Cell. 2017 Jul 24;42(2):170-180.e5. doi: 10.1016/j.devcel.2017.06.020.
9
A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development.
Dev Cell. 2017 May 8;41(3):243-261.e7. doi: 10.1016/j.devcel.2017.04.002. Epub 2017 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验