Das Dipjyoti, Chatti Veena, Emonet Thierry, Holley Scott A
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Department of Physics, Yale University, New Haven, CT, USA.
Dev Cell. 2017 Jul 24;42(2):170-180.e5. doi: 10.1016/j.devcel.2017.06.020.
The biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion. We find that increasing order in cell motion causes a phase transition from symmetric to asymmetric body elongation. In silico and in vivo, overly ordered cell motion converts normal anisotropic fluxes into stable vortices near the posterior tail bud, contributing to asymmetric cell sorting. Thus, disorder is a physical mechanism that ensures the bilateral symmetry of the spinal column. These physical properties of the tissue connect across scales such that patterned disorder at the cellular level leads to the emergence of organism-level order.
胚胎后期生长的生物力学必须受到动态调节,以确保脊柱的双侧对称性。在整个脊椎动物躯干伸长过程中,可运动的中胚层祖细胞通过上皮-间充质转化经历从有序到无序的转变,并对称地分选到左右轴旁中胚层。我们将尾芽样几何结构中细胞迁移的理论模型与实验数据分析相结合,以评估有序和无序细胞运动的重要性。我们发现,细胞运动中有序性的增加会导致从对称到不对称身体伸长的相变。在计算机模拟和体内实验中,过度有序的细胞运动会将正常的各向异性通量转化为尾芽后部附近的稳定涡旋,导致细胞分选不对称。因此,无序是确保脊柱双侧对称性的一种物理机制。组织的这些物理特性跨尺度相连,使得细胞水平上的模式化无序导致生物体水平上的有序出现。