State Key Laboratory of Urban Water Resource & Environment, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
Condensed Matter Science & Technology Institute, Harbin Institute of Technology, Harbin 150001, PR China.
Nanomedicine (Lond). 2018 Sep;13(18):2283-2300. doi: 10.2217/nnm-2018-0106. Epub 2018 Oct 4.
AIM: Polyethylene glycol modified mesoporous silica-coated bismuth nanohybrids (Bi@mSiO-PEG) are fabricated for chemothermotherapy and multimodal imaging. MATERIALS & METHODS: The Bi@mSiO-PEG are synthesized by coating mesoporous SiO onto metallic Bi cores, followed by PEG modification. Their cytotoxicity, photothermal effect, drug loading, antitumor effect and imaging abilities are evaluated. RESULTS: The nanohybrids show good biocompatibility, strong near-infrared absorbance, high photothermal conversion efficiency (∼36.6%), prominent infrared thermal imaging and photothermal killing efficacy on cancer cells. Utilizing the nanohybrids as potent drug carriers, a synergistic antitumor effect through chemothermotherapy is realized. Thanks to the superhigh x-ray attenuation coefficient and strong photothermal ability, high-contrast photoacoustic and x-ray computed tomography imaging are achieved. CONCLUSION: These results reveal great potentials of the Bi@mSiO-PEG for precise and efficient anticancer treatments.
目的:制备聚乙二醇修饰的介孔硅壳包裹的铋纳米杂化材料(Bi@mSiO-PEG),用于化学热疗和多模态成像。
材料与方法:通过在金属铋核上包覆介孔 SiO2,然后进行 PEG 修饰,合成 Bi@mSiO-PEG。评估了它们的细胞毒性、光热效应、药物负载、抗肿瘤效果和成像能力。
结果:纳米杂化物具有良好的生物相容性、强的近红外吸收、高光热转换效率(约 36.6%)、显著的红外热成像和光热杀伤癌细胞的能力。利用纳米杂化物作为有效的药物载体,实现了通过化学热疗的协同抗肿瘤效果。由于超高的 X 射线衰减系数和强的光热能力,实现了高对比度的光声和 X 射线计算机断层成像。
结论:这些结果表明,Bi@mSiO-PEG 具有用于精确和高效抗癌治疗的巨大潜力。
ACS Appl Mater Interfaces. 2018-1-3