State Key Laboratory of Urban Water Resource & Environment, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
Condensed Matter Science & Technology Institute, Harbin Institute of Technology, Harbin 150001, PR China.
Nanomedicine (Lond). 2018 Sep;13(18):2283-2300. doi: 10.2217/nnm-2018-0106. Epub 2018 Oct 4.
Polyethylene glycol modified mesoporous silica-coated bismuth nanohybrids (Bi@mSiO-PEG) are fabricated for chemothermotherapy and multimodal imaging.
MATERIALS & METHODS: The Bi@mSiO-PEG are synthesized by coating mesoporous SiO onto metallic Bi cores, followed by PEG modification. Their cytotoxicity, photothermal effect, drug loading, antitumor effect and imaging abilities are evaluated.
The nanohybrids show good biocompatibility, strong near-infrared absorbance, high photothermal conversion efficiency (∼36.6%), prominent infrared thermal imaging and photothermal killing efficacy on cancer cells. Utilizing the nanohybrids as potent drug carriers, a synergistic antitumor effect through chemothermotherapy is realized. Thanks to the superhigh x-ray attenuation coefficient and strong photothermal ability, high-contrast photoacoustic and x-ray computed tomography imaging are achieved.
These results reveal great potentials of the Bi@mSiO-PEG for precise and efficient anticancer treatments.
制备聚乙二醇修饰的介孔硅壳包裹的铋纳米杂化材料(Bi@mSiO-PEG),用于化学热疗和多模态成像。
通过在金属铋核上包覆介孔 SiO2,然后进行 PEG 修饰,合成 Bi@mSiO-PEG。评估了它们的细胞毒性、光热效应、药物负载、抗肿瘤效果和成像能力。
纳米杂化物具有良好的生物相容性、强的近红外吸收、高光热转换效率(约 36.6%)、显著的红外热成像和光热杀伤癌细胞的能力。利用纳米杂化物作为有效的药物载体,实现了通过化学热疗的协同抗肿瘤效果。由于超高的 X 射线衰减系数和强的光热能力,实现了高对比度的光声和 X 射线计算机断层成像。
这些结果表明,Bi@mSiO-PEG 具有用于精确和高效抗癌治疗的巨大潜力。