Chen Jiajie, Liu Jiaxing, Hu Yaping, Tian Zhengfang, Zhu Yufang
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China.
Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China.
Sci Technol Adv Mater. 2019 Oct 24;20(1):1043-1054. doi: 10.1080/14686996.2019.1682467. eCollection 2019.
In nanoplatform-based tumor treatment, combining chemotherapy with hyperthermia therapy is an interesting strategy to achieve enhanced therapeutic efficacy with low dose of delivery drugs. Compared to photothermal therapy, magnetic hyperthermia has few restrictions on penetrating tissue by an alternating magnetic field, and thereby could cure various solid tumors, even deep-tissue ones. In this work, we proposed to construct magnetic nanocomposites (FeO@PDA@ZIF-90) by the external growth of metal-organic framework ZIF-90 on polydopamine (PDA)-coated FeO nanoparticles for synergistic magnetic hyperthermia and chemotherapy. In such multifunctional platform, FeO nanoparticle was utilized as a magnetic heating seed, PDA layer acted as an inducer for the growth of ZIF-90 shell and porous ZIF-90 shell served as drug nanocarrier to load doxorubicin (DOX). The well-defined FeO@PDA@ZIF-90 core-shell nanoparticles were displayed with an average size of ca. 200 nm and possessed the abilities to load high capacity of DOX as well as trigger drug release in a pH-responsive way. Furthermore, the FeO@PDA@ZIF-90 nanoparticles can raise the local temperature to meet hyperthermia condition under an alternating magnetic field owing to the magnetocaloric effect of FeO cores. In the experiments, the FeO@PDA@ZIF-90 nanoparticles showed a negligible cytotoxicity to Hela cells. More significantly, after cellular internalization, the DOX-loaded FeO@PDA@ZIF-90 nanoparticles exhibited distinctively synergistic effect to kill tumor cells with higher efficacy compared to chemotherapy or magnetic hyperthermia alone, presenting a great potential for efficient tumor therapy.
在基于纳米平台的肿瘤治疗中,将化疗与热疗相结合是一种有趣的策略,能够在低剂量给药的情况下提高治疗效果。与光热疗法相比,磁热疗在通过交变磁场穿透组织方面限制较少,因此可以治愈各种实体肿瘤,甚至是深部组织肿瘤。在这项工作中,我们提议通过在聚多巴胺(PDA)包覆的FeO纳米颗粒上外延生长金属有机框架ZIF-90来构建磁性纳米复合材料(FeO@PDA@ZIF-90),以实现磁热疗与化疗的协同作用。在这种多功能平台中,FeO纳米颗粒用作磁热种子,PDA层作为ZIF-90壳层生长的诱导剂,多孔的ZIF-90壳层用作载药纳米载体来负载阿霉素(DOX)。所制备的具有明确结构的FeO@PDA@ZIF-90核壳纳米颗粒平均尺寸约为200 nm,具有高容量负载DOX以及以pH响应方式触发药物释放的能力。此外,由于FeO核的磁热效应,FeO@PDA@ZIF-90纳米颗粒在交变磁场下能够提高局部温度以满足热疗条件。在实验中,FeO@PDA@ZIF-90纳米颗粒对HeLa细胞显示出可忽略不计的细胞毒性。更重要的是,细胞内化后,负载DOX的FeO@PDA@ZIF-90纳米颗粒与单独化疗或磁热疗相比,在杀死肿瘤细胞方面表现出明显的协同效应,具有更高的疗效,展现出高效肿瘤治疗的巨大潜力。
ACS Appl Mater Interfaces. 2024-9-18
ACS Appl Mater Interfaces. 2017-6-28
Dalton Trans. 2018-2-13
Colloids Surf B Biointerfaces. 2020-11
ACS Omega. 2025-7-3
Int J Mol Sci. 2024-5-27
ADMET DMPK. 2023-11-17
Nanomaterials (Basel). 2023-3-6
Chem Commun (Camb). 2023-3-7
ACS Biomater Sci Eng. 2019-3-11
Sci Technol Adv Mater. 2018-10-26
Coord Chem Rev. 2019-1-15