Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/5 , A-8010 Graz , Austria.
Department of Inorganic Chemistry and Technology , National Institute of Chemistry , Ljubljana SI-1001 , Slovenia.
J Phys Chem B. 2018 Nov 1;122(43):9877-9895. doi: 10.1021/acs.jpcb.8b07071. Epub 2018 Oct 18.
Aminoadamantane drugs are lipophilic amines that block the membrane-embedded influenza A M2 WT (wild type) ion channel protein. The comparative effects of amantadine ( Amt) and its synthetic spiro[pyrrolidine-2,2'-adamantane] (AK13) analogue in dimyristoylphosphatidylcholine (DMPC) bilayers were studied using a combination of experimental biophysical methods, differential scanning calorimetry (DSC), X-ray diffraction, solid-state NMR (ssNMR) spectroscopy, and molecular dynamics (MD) simulations. All three experimental methods pointed out that the two analogues perturbed drastically the DMPC bilayers with AK13 to be more effective at high concentrations. AK13 was tolerated in lipid bilayers at very high concentrations, while Amt was crystallized. This is an important consideration in the formulations of drugs as it designates a limitation of Amt incorporation. MD simulations verify provided details about the strong interactions of the drugs in the interface region between phosphoglycerol backbone and lipophilic segments. The two drugs form hydrogen bonding with both water and sn-2 carbonyls in their amine form or water and phosphate oxygens in their ammonium form. Such localization of the drugs explains the DMPC bilayers reorientation and their strong perturbing effect evidenced by all biophysical methodologies applied.
金刚烷胺类药物是亲脂性胺类物质,可阻断嵌入膜中的流感 A M2 WT(野生型)离子通道蛋白。使用实验生物物理方法(差示扫描量热法(DSC)、X 射线衍射、固态 NMR(ssNMR)光谱和分子动力学(MD)模拟)组合研究了金刚烷胺(Amt)及其合成的螺[pyrrolidine-2,2'-adamantane](AK13)类似物在二肉豆蔻酰磷脂酰胆碱(DMPC)双层中的比较效果。所有三种实验方法都指出,两种类似物剧烈扰乱了 DMPC 双层,AK13 在高浓度下更有效。AK13 可以在脂质双层中耐受非常高的浓度,而 Amt 则结晶。这在药物配方中是一个重要的考虑因素,因为它指定了 Amt 掺入的限制。MD 模拟验证了药物在磷酸甘油骨架和亲脂性片段之间的界面区域的强相互作用的详细信息。两种药物在其胺形式下与水和 sn-2 羰基或在其铵形式下与水和磷酸盐氧形成氢键。药物的这种定位解释了 DMPC 双层的重定向及其通过应用的所有生物物理方法证明的强烈扰动效应。