Suppr超能文献

用于膝关节骨关节炎评估的图形用户界面(GEKO):一种用于组织学分级的开源工具。

A graphic user interface for the evaluation of knee osteoarthritis (GEKO): an open-source tool for histological grading.

机构信息

J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.

出版信息

Osteoarthritis Cartilage. 2019 Jan;27(1):114-117. doi: 10.1016/j.joca.2018.09.005. Epub 2018 Oct 1.

Abstract

OBJECTIVE

In osteoarthritis (OA) models, histology is commonly used to evaluate the severity of joint damage. Unfortunately, semi-quantitative histological grading systems include some level of subjectivity, and quantitative grading systems can be tedious to implement. The objective of this work is to introduce an open source, graphic user interface (GUI) for quantitative grading of knee OA.

METHODS

Inspired by the 2010 OARSI histopathology recommendations for the rat, our laboratory has developed a GUI for the evaluation of knee OA, nicknamed GEKO. In this work, descriptions of the quantitative measures acquired by GEKO are presented and measured in 42 histological images from a rat knee OA model. Using these images, across-session and within-session reproducibility for individual graders is evaluated, and inter-grader reliability across different levels of OA severity is also assessed.

RESULTS

GEKO allowed histological images to be quantitatively scored in less than 1 min per image. In addition, intra-class coefficients (ICCs) were largely above 0.8 for across-session reproducibility, within-session reproducibility, and inter-grader reliability. These data indicate GEKO aided in the reproducibility and repeatability of quantitative OA grading across graders and grading sessions.

CONCLUSIONS

Our data demonstrate GEKO is a reliable and efficient method to calculate quantitative histological measures of knee OA in a rat model. GEKO reduced quantitative grading times relative to manual grading systems and allowed grader reproducibility and repeatability to be easily assessed within a grading session and across time. Moreover, GEKO is being provided as a free, open-source tool for the OA research community.

摘要

目的

在骨关节炎(OA)模型中,组织学通常用于评估关节损伤的严重程度。不幸的是,半定量组织学分级系统存在一定程度的主观性,而定量分级系统实施起来可能很繁琐。本研究的目的是引入一种开源的、图形用户界面(GUI),用于定量分级膝骨关节炎。

方法

受 2010 年 OARSI 组织病理学大鼠推荐标准的启发,我们实验室开发了一种用于评估膝骨关节炎的 GUI,名为 GEKO。在这项工作中,介绍了 GEKO 获得的定量测量的描述,并在来自大鼠膝骨关节炎模型的 42 张组织学图像上进行了测量。使用这些图像,评估了单个分级员的跨会话和会话内的重现性,以及不同 OA 严重程度的分级员之间的可靠性。

结果

GEKO 允许在不到 1 分钟的时间内对组织学图像进行定量评分。此外,跨会话重现性、会话内重现性和分级员之间的可靠性的内部类别系数(ICC)大多大于 0.8。这些数据表明,GEKO 有助于跨分级员和分级会话提高定量 OA 分级的重现性和可重复性。

结论

我们的数据表明,GEKO 是一种可靠且高效的方法,可用于在大鼠模型中计算膝骨关节炎的定量组织学测量。GEKO 减少了定量分级的时间,相对于手动分级系统,并且允许在一个分级会话内和跨时间轻松评估分级员的重现性和可重复性。此外,GEKO 作为一个免费的、开源工具提供给 OA 研究社区。

相似文献

引用本文的文献

本文引用的文献

7
Osteoarthritis cartilage histopathology: grading and staging.骨关节炎软骨组织病理学:分级与分期
Osteoarthritis Cartilage. 2006 Jan;14(1):13-29. doi: 10.1016/j.joca.2005.07.014. Epub 2005 Oct 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验