CAS Key Laboratory of Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
Nat Commun. 2018 Oct 4;9(1):4068. doi: 10.1038/s41467-018-06555-w.
Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS devices as well as other TMDCs devices contacted by graphene.
由不同二维材料堆叠而成的范德华异质结构为解决许多基础物理问题和构建先进设备提供了独特的平台。两个单层之间的扭转角在调节异质结构性质方面起着至关重要的作用。在这里,我们报告了 MoS2/石墨烯范德华异质结中扭转角相关电导率的实验研究。我们发现,在不同的扭转配置下,异质结的垂直电导率可以调节约 5 倍,最高/最低电导率出现在扭转角为 0°/30°时。密度泛函理论模拟表明,这种电导率的变化源于不同扭转角异质结的传输系数差异。我们的工作为在电子学中使用 MoS2/石墨烯异质结提供了指导,特别是在降低 MoS 器件的接触电阻以及与石墨烯接触的其他 TMDCs 器件的接触电阻方面。