Suppr超能文献

设备无关的量子随机数生成。

Device-independent quantum random-number generation.

机构信息

National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, China.

Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China.

出版信息

Nature. 2018 Oct;562(7728):548-551. doi: 10.1038/s41586-018-0559-3. Epub 2018 Sep 19.

Abstract

Randomness is important for many information processing applications, including numerical modelling and cryptography. Device-independent quantum random-number generation (DIQRNG) based on the loophole-free violation of a Bell inequality produces genuine, unpredictable randomness without requiring any assumptions about the inner workings of the devices, and is therefore an ultimate goal in the field of quantum information science. Previously reported experimental demonstrations of DIQRNG were not provably secure against the most general adversaries or did not close the 'locality' loophole of the Bell test. Here we present DIQRNG that is secure against quantum and classical adversaries. We use state-of-the-art quantum optical technology to create, modulate and detect entangled photon pairs, achieving an efficiency of more than 78 per cent from creation to detection at a distance of about 200 metres that greatly exceeds the threshold for closing the 'detection' loophole of the Bell test. By independently and randomly choosing the base settings for measuring the entangled photon pairs and by ensuring space-like separation between the measurement events, we also satisfy the no-signalling condition and close the 'locality' loophole of the Bell test, thus enabling the realization of the loophole-free violation of a Bell inequality. This, along with a high-voltage, high-repetition-rate Pockels cell modulation set-up, allows us to accumulate sufficient data in the experimental time to extract genuine quantum randomness that is secure against the most general adversaries. By applying a large (137.90 gigabits × 62.469 megabits) Toeplitz-matrix hashing technique, we obtain 6.2469 × 10 quantum-certified random bits in 96 hours with a total failure probability (of producing a random number that is not guaranteed to be perfectly secure) of less than 10. Our demonstration is a crucial step towards transforming DIQRNG from a concept to a key aspect of practical applications that require high levels of security and thus genuine randomness. Our work may also help to improve our understanding of the origin of randomness from a fundamental perspective.

摘要

随机性对于许多信息处理应用非常重要,包括数值建模和密码学。基于无漏洞违反贝尔不等式的设备独立量子随机数生成 (DIQRNG) 无需对设备的内部工作进行任何假设,即可产生真正的、不可预测的随机性,因此是量子信息科学领域的终极目标。以前报道的 DIQRNG 实验演示在对抗最普遍的对手时并非可证明安全的,或者没有关闭贝尔测试的“局域性”漏洞。在这里,我们展示了一种可对抗量子和经典对手的 DIQRNG。我们使用最先进的量子光学技术来创建、调制和检测纠缠光子对,在 200 米左右的距离内实现了从创建到检测的效率超过 78%,远远超过了关闭贝尔测试“检测”漏洞的阈值。通过独立且随机地选择测量纠缠光子对的基本设置,并确保测量事件之间的空间分离,我们还满足了无信号条件,并关闭了贝尔测试的“局域性”漏洞,从而实现了无漏洞违反贝尔不等式。再加上高压、高重复率的电光调制器设置,使我们能够在实验时间内积累足够的数据,以提取针对最普遍对手安全的真正的量子随机性。通过应用大型 (137.90 吉比特×62.469 兆比特) Toeplitz 矩阵哈希技术,我们在 96 小时内获得了 6.2469×10 个量子认证的随机位,总失败概率(产生的随机数不能保证是完全安全的)低于 10。我们的演示是将 DIQRNG 从概念转化为需要高安全性和真正随机性的实际应用的关键步骤。我们的工作也可能有助于从根本上提高我们对随机性起源的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验