文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚乙二醇表面密度和链长对甲氨蝶呤载壳聚糖纳米粒的药代动力学和生物分布的影响。

Effects of PEG surface density and chain length on the pharmacokinetics and biodistribution of methotrexate-loaded chitosan nanoparticles.

机构信息

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China,

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK,

出版信息

Int J Nanomedicine. 2018 Sep 24;13:5657-5671. doi: 10.2147/IJN.S167443. eCollection 2018.


DOI:10.2147/IJN.S167443
PMID:30288039
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6161721/
Abstract

BACKGROUND: One of the most important aspects of drug delivery is extended nanoparticle (NP) residence time in vivo. Herein, we report a series of methotrexate (MTX)-loaded chito-san (CS) NPs coated with differently sized methoxy polyethylene glycol (mPEG) at different mPEG surface densities. MATERIALS AND METHODS: MTX was incorporated into NPs (112.8-171.2 nm in diameter) prepared from the resulting mPEG-g-CS. The NPs had a zeta potential of +7.4-35.0 mV and MTX loading efficiency of 17.1%-18.4%. MTX/mPEG-g-CS NPs showed an initial burst release of MTX followed by a sustained-release profile in PBS at pH 7.4. RESULTS: The in vitro cellular uptake study showed that MTX accumulation in J774A.1 macrophage cells decreased with increasing the mPEG surface density or the mPEG molecular weight. The pharmacokinetic study on Sprague Dawley rats revealed an increase in AUC0-72 h (area under the plasma drug concentration-time curve over a period of 72 hours) with increasing the mPEG surface density or the mPEG molecular weight and a linear correlation between the mPEG surface density and AUC. CONCLUSION: The biodistribution study on Institute of Cancer Research (ICR) mice revealed that MTX/mPEG-g-CS NPs significantly enhanced blood circulation time in the body and decreased accumulation in liver, spleen, and lung. These results suggest the potential of the mPEG-g-CS NPs as a promising candidate for drug delivery.

摘要

背景:药物输送最重要的方面之一是延长纳米粒子(NP)在体内的驻留时间。在此,我们报告了一系列甲氨蝶呤(MTX)负载的壳聚糖(CS)NP,这些 NP 用不同大小的甲氧基聚乙二醇(mPEG)在不同的 mPEG 表面密度下进行了涂层处理。

材料和方法:将 MTX 掺入由所得的 mPEG-g-CS 制备的 NP(直径为 112.8-171.2nm)中。NP 的 ζ 电位为+7.4-35.0mV,MTX 载药效率为 17.1%-18.4%。MTX/mPEG-g-CS NP 在 PBS(pH7.4)中表现出 MTX 的初始突释释放,随后是持续释放特征。

结果:体外细胞摄取研究表明,随着 mPEG 表面密度或 mPEG 分子量的增加,J774A.1 巨噬细胞中 MTX 的积累减少。Sprague Dawley 大鼠的药代动力学研究表明,随着 mPEG 表面密度或 mPEG 分子量的增加,AUC0-72h(72 小时内血浆药物浓度-时间曲线下面积)增加,并且 mPEG 表面密度与 AUC 呈线性相关。

结论:在 ICR 小鼠中的体内分布研究表明,MTX/mPEG-g-CS NP 显著延长了体内血液循环时间,并减少了肝脏、脾脏和肺部的积累。这些结果表明,mPEG-g-CS NP 作为药物输送的有前途的候选物具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/edd7f54fa38e/ijn-13-5657Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/6dce76b3ae31/ijn-13-5657Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/b1268aa20f4b/ijn-13-5657Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/e064ab30ba7b/ijn-13-5657Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/5512a4b54d41/ijn-13-5657Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/3d5da6137e6d/ijn-13-5657Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/5ad1d5e1d331/ijn-13-5657Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/a7f6699313a9/ijn-13-5657Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/edd7f54fa38e/ijn-13-5657Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/6dce76b3ae31/ijn-13-5657Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/b1268aa20f4b/ijn-13-5657Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/e064ab30ba7b/ijn-13-5657Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/5512a4b54d41/ijn-13-5657Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/3d5da6137e6d/ijn-13-5657Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/5ad1d5e1d331/ijn-13-5657Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/a7f6699313a9/ijn-13-5657Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6623/6161721/edd7f54fa38e/ijn-13-5657Fig8.jpg

相似文献

[1]
Effects of PEG surface density and chain length on the pharmacokinetics and biodistribution of methotrexate-loaded chitosan nanoparticles.

Int J Nanomedicine. 2018-9-24

[2]
Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity.

Mol Pharm. 2014-7-7

[3]
Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro.

Colloids Surf B Biointerfaces. 2008-2-15

[4]
Methotrexate-incorporated polymeric nanoparticles of methoxy poly(ethylene glycol)-grafted chitosan.

Colloids Surf B Biointerfaces. 2009-3-1

[5]
Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect.

ACS Appl Mater Interfaces. 2014-7-10

[6]
Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line.

Pharm Dev Technol. 2018-1-18

[7]
[Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells].

Yao Xue Xue Bao. 2013-12

[8]
Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy.

J Control Release. 2014-12-18

[9]
Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology.

Int J Nanomedicine. 2019-7-2

[10]
Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo.

Sci Rep. 2016-7-8

引用本文的文献

[1]
The Art of PEGylation: From Simple Polymer to Sophisticated Drug Delivery System.

Int J Mol Sci. 2025-3-27

[2]
Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles.

Int J Pharm X. 2024-8-28

[3]
Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies.

Int J Nanomedicine. 2024

[4]
Charge-Complementary Polymersomes for Enhanced mRNA Delivery.

Pharmaceutics. 2023-12-15

[5]
Application of mPEG-CS-cRGD/-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells.

Drug Deliv. 2023-12

[6]
Impact of nanocarrier aggregation on EPR-mediated tumor targeting.

Front Bioeng Biotechnol. 2023-7-21

[7]
Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics.

Int J Pharm. 2023-5-25

[8]
NMR Characterization of Polyethylene Glycol Conjugates for Nanoparticle Functionalization.

ACS Omega. 2023-1-18

[9]
Preparation of Zein-Based Nanoparticles: Nanoprecipitation versus Microfluidic-Assisted Manufacture, Effects of PEGylation on Nanoparticle Characteristics and Cellular Uptake by Melanoma Cells.

Int J Nanomedicine. 2022

[10]
Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform.

Int J Mol Sci. 2022-6-15

本文引用的文献

[1]
Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo.

ACS Appl Mater Interfaces. 2017-4-3

[2]
Synthesis and characterization of PEGylated bolaamphiphiles with enhanced retention in liposomes.

J Colloid Interface Sci. 2016-11-15

[3]
Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

Int J Biol Macromol. 2016-10

[4]
Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer.

Acta Biomater. 2015-9

[5]
Synthesis and formulation of methotrexate (MTX) conjugated LaF3:Tb(3+)/chitosan nanoparticles for targeted drug delivery applications.

Biomed Pharmacother. 2015-2

[6]
Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity.

Mol Pharm. 2014-7-7

[7]
Enhanced antitumor efficacy by methotrexate conjugated Pluronic mixed micelles against KBv multidrug resistant cancer.

Int J Pharm. 2013-5-17

[8]
Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release.

Int J Pharm. 2013-2-16

[9]
Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems.

Int J Pharm. 2012-4-10

[10]
Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement.

Eur J Pharm Sci. 2011-10-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索