School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.
The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States.
Nano Lett. 2018 Nov 14;18(11):7004-7013. doi: 10.1021/acs.nanolett.8b02953. Epub 2018 Oct 5.
Synthesizing concave-structured nanoparticles (NP) with high-index surfaces offers a viable method to significantly enhance the catalytic activity of NPs. Current approaches for fabricating concave NPs, however, are limited. Exploring novel synthesis methods requires a thorough understanding of the competing mechanisms that contribute to the evolution of surface structures during NP growth. Here, by tracking the evolution of Pd nanocubes into concave NPs at atomic scale using in situ liquid cell transmission electron microscopy, our study reveals that concave-structured Pd NPs can be formed by the cointroduction of surface capping agents and halogen ions. These two chemicals jointly create a new surface energy landscape of Pd NPs, leading to the morphological transformation. In particular, Pd atoms dissociate from the {100} surfaces with the aid of Cl ions and preferentially redeposit to the corners and edges of the nanocubes when the capping agent polyvinylpyrrolidone is introduced, resulting in the formation of concave Pd nanocubes with distinctive high-index facets. Our work not only demonstrates a potential route for synthesizing NPs with well-defined high-index facets but also reveals the detailed atomic-scale kinetics during their formation, providing insight for future predictive synthesis.
合成具有高指数表面的凹面结构纳米粒子 (NP) 是显著提高 NP 催化活性的一种可行方法。然而,目前制造凹面 NP 的方法有限。探索新的合成方法需要深入了解在 NP 生长过程中影响表面结构演变的竞争机制。在这里,通过使用原位液体池透射电子显微镜在原子尺度上跟踪 Pd 纳米立方体演变成凹面 NP,我们的研究表明,通过引入表面封端剂和卤素离子可以形成具有凹面结构的 Pd NP。这两种化学物质共同创造了一个新的 Pd NPs 表面能量景观,导致形态转变。特别是,Pd 原子在 Cl 离子的帮助下从 {100} 表面解离,并在引入封端剂聚乙烯吡咯烷酮时优先重新沉积到纳米立方体的角和棱上,从而形成具有独特高指数面的凹面 Pd 纳米立方体。我们的工作不仅展示了一种合成具有明确定义的高指数面的 NPs 的潜在途径,还揭示了它们形成过程中的详细原子尺度动力学,为未来的预测合成提供了见解。