Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington DC, 20375, USA.
Phys Chem Chem Phys. 2018 Oct 17;20(40):25648-25656. doi: 10.1039/c8cp03898h.
Electrochemical surface plasmon resonance (ESPR) monitors faradaic processes optically by the change in refractive index that occurs with a change in redox state at the electrode surface. Here we apply ESPR to investigate the anode-grown Geobacter sulfurreducens biofilm (GSB), a model system used to study electroactive microbial biofilms (EABFs) which perform electrochemical reactions using electrodes as metabolic electron acceptors or donors. A substantial body of evidence indicates that electron transfer reactions among hemes of c-type cytochromes (c-Cyt) play major roles in the extracellular electron transfer (EET) pathways that connect intracellular metabolic processes of cells in an EABF to the electrode surface. The results reported here reveal that when the potential of the electrode is changed from relatively oxidizing (0.40 V vs. SHE) to reducing (-0.55 V vs. SHE) and then back to oxidizing, 70% of c-Cyt residing closest to the biofilm/electrode (within hundreds of nm from the electrode surface) appear to remain trapped in the reduced state, requiring as long as 12 hours to be re-oxidized. c-Cyt storing electrons cannot contribute to EET, yet turnover current resulting from cellular oxidation of acetate coupled with EET to the electrode surface is unaffected. This suggests that a relatively small fraction of c-Cyt residing closest to the biofilm/electrode interface is involved in EET while the majority store electrons. The results also reveal that biomass density at the biofilm/electrode interface increases rapidly during lag phase, reaching its maximum value at the onset of exponential biofilm growth when turnover current begins to rapidly increase.
电化学表面等离子体共振 (ESPR) 通过电极表面氧化还原状态变化引起的折射率变化来光学监测法拉第过程。在这里,我们应用 ESPR 来研究阳极生长的脱硫弧菌 (GSB) 生物膜,这是一个用于研究电活性微生物生物膜 (EABF) 的模型系统,它使用电极作为代谢电子受体或供体来进行电化学反应。大量证据表明,细胞色素 c 型 (c-Cyt) 中的血红素之间的电子转移反应在将 EABF 中细胞的细胞内代谢过程与电极表面连接的细胞外电子转移 (EET) 途径中起主要作用。这里报道的结果表明,当电极的电势从相对氧化 (0.40 V 相对于 SHE) 变为还原 (-0.55 V 相对于 SHE) ,然后再回到氧化时,靠近生物膜/电极的 c-Cyt 中 70%(在距电极表面数百纳米的范围内)似乎仍然被困在还原状态,需要长达 12 小时才能重新氧化。储存电子的 c-Cyt 不能贡献于 EET,但细胞对醋酸盐的氧化与向电极表面的 EET 耦合产生的周转电流不受影响。这表明,与生物膜/电极界面最接近的 c-Cyt 的一小部分参与 EET,而大部分则储存电子。结果还表明,在滞后期,生物膜/电极界面处的生物量密度迅速增加,当周转电流开始快速增加时,在指数生长开始时达到最大值。