Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.
Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
FASEB J. 2019 Feb;33(2):2537-2552. doi: 10.1096/fj.201800502R. Epub 2018 Oct 5.
KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (K) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout ( Kcne5) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5 mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte K current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current ( I). The current increases arose from an apex-specific increase in slow transient outward current-1 ( I) (conducted by K1.5) and I (conducted by K4) and an increase in I (conducted by K2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where K2.1 was also detected in both Kcne5 and Kcne5 mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and K2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases I by reducing K2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of K2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in K2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of K2.1 in mouse heart. Increased K current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS.-David, J.-P., Lisewski, U., Crump, S. M., Jepps, T. A., Bocksteins, E., Wilck, N., Lossie, J., Roepke, T. K., Schmitt, N., Abbott, G. W. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular K currents and predisposes to ventricular arrhythmia.
KCNE5 是一个 X 连锁基因,编码 KCNE5,这是电压门控钾 (K) 通道的辅助亚基。人类 KCNE5 突变与心房颤动 (AF) 和 Brugada 综合征 (BrS) 引起的心律失常有关,这些心律失常可能是由于心肌细胞中钾电流增加引起的。为了确定潜在的分子机制,我们创建并研究了 Kcne5 敲除 (Kcne5) 小鼠。心内电图显示,Kcne5 缺失导致室性早搏,增加了多形性室性心动过速的易感性 (Kcne5 小鼠为 60%,而非 Kcne5 小鼠为 24%),心室不应期缩短 10%。Kcne5 缺失增加了心尖部和缺乏快速瞬时外向电流 (I) 的隔心肌细胞亚群的心室心肌细胞平均 K 电流密度。电流增加源于心尖部特异性的缓慢瞬时外向电流-1 (I) (由 K1.5 传导) 和 I (由 K4 传导) 增加,以及心尖部和隔部的 I (由 K2.1 传导) 增加。Kcne5 蛋白定位于心室心肌细胞的闰盘,在 Kcne5 和 Kcne5 小鼠中也检测到 K2.1。在 HL-1 心脏细胞和人胚肾细胞中,KCNE5 和 K2.1 在细胞表面共定位,但主要在细胞内囊泡中,提示 Kcne5 缺失通过减少 K2.1 细胞内隔离来增加 I。与人类 AF 相关的突变 KCNE5-L65F 使 K2.1-KCNE5 通道的电压依赖性负移,使其最大电流密度增加 >2 倍,而与 BrS 相关的 KCNE5 突变使 K2.1 电压依赖性的负移更轻微。这些发现代表了 Kcne5 的第一个报道的固有作用,也是第一个在小鼠心脏中证明 Kcne 对 K2.1 的调节作用。增加的 K 电流是 KCNE5 破坏的表现,这很可能在小鼠和人类心脏中都很常见,为人类 KCNE5 相关的 AF 和 BrS 提供了一个合理的机制基础。-David,J.-P.,Lisewski,U.,Crump,S. M.,Jepps,T. A.,Bocksteins,E.,Wilck,N.,Lossie,J.,Roepke,T. K.,Schmitt,N.,Abbott,G. W. 敲除小鼠的 X 连锁、Brugada 综合征和心房颤动相关的 Kcne5 增强了心室 K 电流,并易患室性心律失常。