Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, UK.
Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea.
Genome Biol. 2018 Oct 5;19(1):155. doi: 10.1186/s13059-018-1544-8.
Reconstruction of ancestral karyotypes is critical for our understanding of genome evolution, allowing for the identification of the gross changes that shaped extant genomes. The identification of such changes and their time of occurrence can shed light on the biology of each species, clade and their evolutionary history. However, this is impeded by both the fragmented nature of the majority of genome assemblies and the limitations of the available software to work with them. These limitations are particularly apparent in birds, with only 10 chromosome-level assemblies reported thus far. Algorithmic approaches applied to fragmented genome assemblies can nonetheless help define patterns of chromosomal change in defined taxonomic groups.
Here, we make use of the DESCHRAMBLER algorithm to perform the first large-scale study of ancestral chromosome structure and evolution in birds. This algorithm allows us to reconstruct the overall genome structure of 14 key nodes of avian evolution from the Avian ancestor to the ancestor of the Estrildidae, Thraupidae and Fringillidae families.
Analysis of these reconstructions provides important insights into the variability of rearrangement rates during avian evolution and allows the detection of patterns related to the chromosome distribution of evolutionary breakpoint regions. Moreover, the inclusion of microchromosomes in our reconstructions allows us to provide novel insights into the evolution of these avian chromosomes, specifically.
重建祖先的染色体组型对于我们理解基因组的进化至关重要,它可以帮助我们识别形成现存基因组的巨大变化。这些变化的识别及其发生的时间,可以揭示每个物种、进化枝及其进化历史的生物学特征。然而,这受到大多数基因组组装的碎片化性质以及现有软件在处理这些组装时的局限性的阻碍。这些限制在鸟类中尤为明显,迄今为止仅报告了 10 个染色体水平的组装。应用于碎片化基因组组装的算法方法可以帮助我们在特定的分类群中定义染色体变化的模式。
在这里,我们利用 DESCHRAMBLER 算法首次对鸟类的祖先染色体结构和进化进行了大规模研究。该算法使我们能够从鸟类祖先到 Estrildidae、Thraupidae 和 Fringillidae 科祖先的 14 个鸟类进化的关键节点重建整个基因组结构。
对这些重建的分析为鸟类进化过程中重排率的可变性提供了重要的见解,并允许检测与进化断点区域染色体分布相关的模式。此外,我们的重建包括微染色体,这使我们能够深入了解这些鸟类染色体的进化。