Alfieri James M, Bolwerk Kevin, Hu Zhaobo, Blackmon Heath
Department of Biology, Texas A&M University.
Ecology and Evolutionary Biology Program, Texas A&M University.
bioRxiv. 2024 Dec 4:2024.11.29.626112. doi: 10.1101/2024.11.29.626112.
Birds display striking variation in chromosome number, defying the traditional view of highly conserved avian karyotypes. However, the evolutionary drivers of this variability remain unclear. To address this, we fit probabilistic models of chromosome number evolution across birds, enabling us to estimate rates of evolution for total chromosome number and the number of microchromosomes and macrochromosomes while simultaneously accounting for the impact of other evolving traits. Our analyses revealed higher rates of chromosome fusion than fission across all bird lineages. Notably, much of this signal was driven by Passeriformes, where migratory species showed a particularly strong bias towards fusions compared to sedentary counterparts. Furthermore, a robust correlation between the rearrangement rates of microchromosomes and macrochromosomes suggests that genome-wide processes drive rates of structural evolution. Additionally, we found that lineages with larger population sizes exhibited higher rates of both fusion and fission, indicating that positive selection plays a dominant role in driving divergence in chromosome number. Our findings illuminate the evolutionary dynamics of avian karyotypes and highlight that, while the fitness effects of random structural mutations are often deleterious, beneficial mutations may dominate karyotype divergence in some clades.
鸟类在染色体数目上表现出显著的差异,这与传统上认为鸟类核型高度保守的观点相悖。然而,这种变异性的进化驱动因素仍不清楚。为了解决这个问题,我们构建了鸟类染色体数目进化的概率模型,使我们能够估计总染色体数、微染色体数和大染色体数的进化速率,同时考虑其他进化特征的影响。我们的分析表明,在所有鸟类谱系中,染色体融合的速率高于裂变。值得注意的是,这种信号大多是由雀形目驱动的,与定居物种相比,迁徙物种在融合方面表现出特别强烈的偏向。此外,微染色体和大染色体重排速率之间的强相关性表明,全基因组过程驱动着结构进化的速率。此外,我们发现种群规模较大的谱系在融合和裂变方面都表现出较高的速率,这表明正选择在推动染色体数目差异方面起主导作用。我们的研究结果揭示了鸟类核型的进化动态,并强调虽然随机结构突变的适应性效应通常是有害的,但有益突变可能在某些进化枝的核型差异中占主导地位。