Lei Chengfeng, Sun Xiulian
Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
BMC Pharmacol Toxicol. 2018 Oct 5;19(1):61. doi: 10.1186/s40360-018-0250-1.
Evaluating the toxicity or effectiveness of two or more toxicants in a specific population often requires specialized statistical software to calculate and compare median lethal doses (LDs). Tests for equality of LDs using probit regression with parallel slopes have been implemented in many software packages, while tests for cases of arbitrary slopes are not generally available.
In this study, we established probit-log(dose) regression models and solved them by the maximum likelihood method using Microsoft Excel. The z- and χ-tests were used to assess significance and goodness of fit to the probit regression models, respectively. We calculated the lethal doses (LDs) of the toxicants at different significance levels and their 95% confidence limits (CLs) based on an accurate estimation of log(LD) variances. We further calculated lethal dose ratios and their 95% CLs for two examples without assuming parallel slopes following the method described by Robertson, et al., 2017.
We selected representative toxicology datasets from the literature as case studies. For datasets without natural responses in the control group, the slopes, intercepts, χ statistics and LDs calculated using our method were identical to those calculated using Polo-Plus and SPSS software, and the 95% CLs of the lethal dose ratios between toxicants were close to those calculated using Polo-Plus. For datasets that included natural responses in the control group, our results were also close to those calculated using Polo-Plus and SPSS.
This procedure yielded accurate estimates of lethal doses and 95% CLs at different significance levels as well as the lethal dose ratios and 95% CLs between two examples. The procedure could be used to assess differences in the toxicities of two examples without the assumption of parallelism between probit-log(dose) regression lines.
评估特定人群中两种或更多种毒物的毒性或有效性通常需要使用专门的统计软件来计算和比较半数致死剂量(LD)。许多软件包中都已实现使用具有平行斜率的概率单位回归来检验LD的相等性,而对于任意斜率情况的检验通常不可用。
在本研究中,我们建立了概率单位 - 对数(剂量)回归模型,并使用Microsoft Excel通过最大似然法求解。分别使用z检验和χ检验来评估概率单位回归模型的显著性和拟合优度。基于对log(LD)方差的准确估计,我们计算了不同显著性水平下毒物的致死剂量(LD)及其95%置信区间(CL)。我们进一步按照Robertson等人2017年描述的方法,在不假设平行斜率的情况下,计算了两个实例的致死剂量比及其95% CL。
我们从文献中选择了具有代表性的毒理学数据集作为案例研究。对于对照组中无自然反应的数据集,使用我们的方法计算的斜率、截距、χ统计量和LD与使用Polo - Plus和SPSS软件计算的结果相同,并且毒物之间致死剂量比的95% CL与使用Polo - Plus计算的结果接近。对于对照组中包含自然反应的数据集,我们的结果也与使用Polo - Plus和SPSS计算的结果接近。
该程序在不同显著性水平下准确估计了致死剂量和95% CL,以及两个实例之间的致死剂量比和95% CL。该程序可用于评估两个实例的毒性差异,而无需假设概率单位 - 对数(剂量)回归线之间平行。