Suppr超能文献

通过高通量表型分析平台提高豌豆和白羽扇豆的抗冻性

Frost tolerance improvement in pea and white lupin by a high-throughput phenotyping platform.

作者信息

Franguelli Nicolò, Cavalli Daniele, Notario Tommaso, Pecetti Luciano, Annicchiarico Paolo

机构信息

Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy.

出版信息

Front Plant Sci. 2024 Dec 20;15:1490577. doi: 10.3389/fpls.2024.1490577. eCollection 2024.

Abstract

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance. This study focused on pea and white lupin with the objectives of (i) optimizing an easy-to-build, high-throughput phenotyping platform for frost tolerance assessment with respect to optimal freezing temperatures, and (ii) verifying the consistency of genotype plant mortality responses across platform and field conditions. The platform was a 13.6 m freezing chamber with programmable temperature in the range of -15°C to 25°C. The study included 11 genotypes per species with substantial variation for field-based winter plant survival. Plant seedlings were evaluated under four freezing temperature treatments, i.e., -7°C, -9°C, -11°C, and -13°C, after a 15-day acclimation period at 4°C. Genotype plant mortality and lethal temperature corresponding to 50% mortality (LT) were assessed at the end of a regrowth period, whereas biomass injury was observed through a 10-level visual score based on the amount of necrosis and mortality after recovery and regrowth. On average, pea displayed higher frost tolerance than white lupin (mean LT of -12.8 -11.0°C). The genotype LT values ranged from -11.6°C to -14.5°C for pea and from -10.0°C to -12.0°C for lupin. The freezing temperature that maximized the genotype mortality variation was -13°C for pea and -11°C for lupin. The genotype mortality at these temperatures exhibited high correlations with LT values (0.91 for pea and 0.94 for lupin) and the biomass injury score (0.98 for pea and 0.97 for lupin). The frost tolerance responses in the platform showed a good consistency with the field-based winter survival of the genotypes. Our study indicates the reliability of genotype frost tolerance assessment under artificial conditions for two cool-season grain legumes, offering a platform that could be valuable for crop improvement as well as for genomics and ecophysiological research.

摘要

气候变化可能会使欧洲秋季凉爽季节豆科谷物的播种范围向北扩展,以便利用更温和的冬季并规避后期干旱风险增加的情况。更强的抗冻性是一个关键的育种目标,因为温和温度期之后的突然霜冻可能会导致适应不足的植物冬季死亡率很高。逐年增加的气候变化阻碍了基于田间的抗冻性选择。本研究聚焦于豌豆和白羽扇豆,目标是:(i)针对最佳冷冻温度优化一个易于搭建的高通量表型分析平台,用于评估抗冻性;(ii)验证不同基因型植物在平台和田间条件下死亡率反应的一致性。该平台是一个13.6米的冷冻室,温度可在-15°C至25°C范围内编程控制。该研究每种作物包括11个基因型,它们在田间冬季植株存活率方面有很大差异。在4°C下经过15天的驯化期后,对植物幼苗进行四种冷冻温度处理,即-7°C、-9°C、-11°C和-13°C。在再生期结束时评估基因型植物死亡率和对应50%死亡率的致死温度(LT),而通过基于恢复和再生后的坏死和死亡率数量的10级视觉评分来观察生物量损伤情况。平均而言,豌豆的抗冻性高于白羽扇豆(平均LT为-12.8°C对-11.0°C)。豌豆的基因型LT值范围为-11.6°C至-14.5°C,羽扇豆的基因型LT值范围为-10.0°C至-12.0°C。使基因型死亡率差异最大化的冷冻温度,豌豆为-13°C,羽扇豆为-11°C。这些温度下的基因型死亡率与LT值(豌豆为0.91,羽扇豆为0.94)和生物量损伤评分(豌豆为0.98,羽扇豆为0.97)呈现高度相关性。平台中的抗冻性反应与基因型在田间的冬季存活率表现出良好的一致性。我们的研究表明了在人工条件下对两种凉爽季节豆科谷物进行基因型抗冻性评估的可靠性,提供了一个对作物改良以及基因组学和生态生理学研究可能有价值的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e2/11695127/cef4ec6e59e9/fpls-15-1490577-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验