Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany.
Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia.
ISME J. 2019 Feb;13(2):482-493. doi: 10.1038/s41396-018-0267-x. Epub 2018 Oct 5.
The central Baltic Sea is characterized by a pelagic redox zone exhibiting high dark CO fixation rates below the chemocline. These rates are mainly driven by chemolithoautotrophic and denitrifying Sulfurimonas GD17 subgroup cells which are motile and fast-reacting r-strategists. Baltic Sea redox zones are unstable and a measurable overlap of nitrate and reduced sulfur, essential for chemosynthesis, is often only available on small scales and short times due to local mixing events. This raises the question of how GD17 cells gain access to electron donors or acceptors over longer term periods and under substrate deficiency. One possible answer is that GD17 cells store high-energy-containing polyphosphate during favorable nutrient conditions to survive periods of nutrient starvation. We used scanning electron microscopy with energy-dispersive X-ray spectroscopy to investigate potential substrate enrichments in single GD17 cells collected from Baltic Sea redox zones. More specific substrate enrichment features were identified in experiments using Sulfurimonas gotlandica GD1, a GD17 representative. Sulfurimonas cells accumulated polyphosphate both in situ and in vitro. Combined genome and culture-dependent analyses suggest that polyphosphate serves as an energy reservoir to maintain cellular integrity at unfavorable substrate conditions. This redox-independent energy supply would be a precondition for sustaining the r-strategy lifestyle of GD17 and may represent a newly identified survival strategy for chemolithoautotrophic prokaryotes occupying eutrophic redox zones.
波罗的海中部的浮游生物氧化还原带具有高暗 CO 固定率,其特征是在化变层下方。这些速率主要由化能自养和反硝化硫单胞菌 GD17 亚群细胞驱动,这些细胞具有运动性和快速反应的 r 策略。波罗的海氧化还原带不稳定,由于局部混合事件,硝酸盐和还原硫的可测量重叠对于化学生物合成至关重要,通常只在小范围内和短时间内可用。这就提出了一个问题,即在底物缺乏的情况下,GD17 细胞如何在长期内获得电子供体或受体。一种可能的答案是,GD17 细胞在有利的营养条件下储存高能量含磷聚合物,以在营养饥饿期间存活。我们使用扫描电子显微镜和能量色散 X 射线光谱法来研究从波罗的海氧化还原带收集的单个 GD17 细胞中可能的底物富集。在使用硫单胞菌 GD1 的实验中,更具体的底物富集特征被确定,硫单胞菌 GD1 是 GD17 的代表。硫单胞菌细胞在原位和体外都积累了多磷酸盐。结合基因组和基于培养的分析表明,多磷酸盐作为一种能量储备,在不利的底物条件下维持细胞完整性。这种与氧化还原无关的能量供应是维持 GD17 r 策略生活方式的前提条件,并且可能代表了占据富营养氧化还原带的化能自养原核生物的一种新发现的生存策略。