Suppr超能文献

钴卟啉标记的疏水性纳米颗粒的螯合、制剂、包封、保留和体内生物分布:油胺确保了纳米颗粒中钴的稳定螯合,从而使纳米颗粒在肿瘤中积累。

Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with Co-porphyrin: Oleylamine ensures stable chelation of cobalt in nanoparticles that accumulate in tumors.

机构信息

Center for Single Particle Science and Engineering (SPSE), Institute for Molecular Medicine, Health Sciences, University Southern Denmark, Campusvej 55, Odense DK-5230, Denmark; Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, Santiago de Compostela 15706, Spain.

Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, Odense 5000, Denmark.

出版信息

J Control Release. 2018 Dec 10;291:11-25. doi: 10.1016/j.jconrel.2018.09.027. Epub 2018 Oct 3.

Abstract

BACKGROUND AND MOTIVATION

While small molecules can be used in cancer diagnosis there is a need for imageable diagnostic NanoParticles (NPs) that act as surrogates for the therapeutic NPs. Many NPs are composed of hydrophobic materials so the challenge is to formulate hydrophobic imaging agents. To develop individualized medical treatments based on NP, a first step should be the selection of patients who are likely responders to the treatment as judged by imaging tumor accumulation of NPs. This requires NPs with the same size and structure as the subsequent therapeutic NPs but labelled with a long-lived radionuclide. Cobalt isotopes are good candidates for NP labelling since Co has half-life of 17.5 h and positron energy of 570 keV while Co (t 271.6 d) is an isotope suited for preclinical single photon emission tomography (SPECT) to visualize biodistribution and pharmacokinetics of NPs. We used the hydrophobic octaethyl porphyrin (OEP) to chelate cobalt and to encapsulate it inside hydrophobic liquid NPs (LNPs). We hypothesized that at least two additional hydrophobic axial ligands (oleylamine, OA) must be provided to the OEP-Co complex in order to encapsulate and retain Co inside LNP.

RESULTS

  1. Cobalt chelation by OEP and OA. The association constant of cobalt to OEP was 2.49 × 10 M and the formation of the hexacoordinate complex OEP-Co-4OA was measured by spectroscopy. 2. NP formulation and characterization: LNPs were prepared by the fast ethanol injection method and were composed of a liquid core (triolein) surrounded by a lipid monolayer (DSPC:Cholesterol:DSPE-PEG). The size of the LNPs loaded with the cobalt complex was 40 ± 5 nm, 3. Encapsulation of OEP-Co-OA: The loading capacity of OEP-Co-OA in LNP was 5 mol%. 4. Retention of OEP-Co-4OA complex in the LNPs: the positive effect of the OA ligands was demonstrated on the stability of the OEP-Co-4OA complex, providing a half-life for retention in PBS of 170 h (7 days) while in the absence of the axial OA ligands was only 22 h. 5 Biodistribution Study: the in vivo biodistribution of LNP was studied in AR42J pancreatic tumor-bearing mice. The estimated half-life of LNPs in blood was about 7.2 h. Remarkably, the accumulation of LNPs in the tumor was as high as 9.4% ID/g 24 h after injection with a doubling time for tumor accumulation of 3.22 h. The most important result was that the nanoparticles could indeed accumulate in the AR42J tumors up to levels greater than those of other NPs previously measured in the same tumor model, and at about half the values reported for the molecular agent Co-DOTATATE.

CONCLUSIONS

The additional hydrophobic chelator OA was indeed needed to obtain a stable octahedral OEP-Co-4OA. Cobalt was actually well-retained inside LNP in the OEP-Co-4OA complex. The method described in the present work for the core-labelling of LNPs with cobalt is now ready for labeling of NPs with Co, or indeed other hexadentate radionuclides of interest for preclinical in vivo PET-imaging and radio-therapeutics.

摘要

背景与动机

虽然小分子可用于癌症诊断,但仍需要可成像的诊断性纳米颗粒(NPs)作为治疗性 NPs 的替代品。许多 NPs 由疏水性材料组成,因此挑战在于制定疏水性成像剂。为了基于 NP 制定个体化医疗方案,首先应该选择可能对治疗有反应的患者,这可以通过成像肿瘤中 NP 的积累来判断。这需要与后续治疗性 NPs 具有相同大小和结构但用长半衰期放射性核素标记的 NPs。钴同位素是 NP 标记的良好候选物,因为 Co 的半衰期为 17.5 h,正电子能量为 570 keV,而 Co(t 271.6 d) 是适合临床前单光子发射断层扫描(SPECT)的同位素,用于可视化 NPs 的生物分布和药代动力学。我们使用疏水性八乙基卟啉(OEP)螯合钴并将其封装在疏水性液体 NPs(LNPs)中。我们假设,为了封装和保留 Co 在内的 LNP 中,OEP-Co 络合物中至少需要另外两个疏水性轴向配体(油胺,OA)。

结果

  1. OEP 和 OA 对钴的螯合。钴与 OEP 的缔合常数为 2.49×10 M,通过光谱法测量了六配位配合物 OEP-Co-4OA 的形成。2. NP 配方和表征:通过快速乙醇注入法制备 LNPs,由液体核(三油酸甘油酯)组成,由脂质单层(DSPC:胆固醇:DSPE-PEG)包围。负载钴络合物的 LNPs 的粒径为 40±5nm。3. OEP-Co-OA 的包封:OEP-Co-OA 在 LNP 中的包封率为 5 mol%。4. OEP-Co-4OA 配合物在 LNPs 中的保留:OA 配体的阳性效应证明了 OEP-Co-4OA 配合物的稳定性,在 PBS 中的保留半衰期为 170 h(7 天),而在没有轴向 OA 配体的情况下仅为 22 h。5. 体内分布研究:在 AR42J 胰腺肿瘤荷瘤小鼠中研究了 LNP 的体内分布。LNPs 在血液中的半衰期约为 7.2 h。值得注意的是,LNP 在注射后 24 h 内在肿瘤中的积累高达 9.4% ID/g,肿瘤积累的倍增时间为 3.22 h。最重要的结果是,与以前在相同肿瘤模型中测量的其他 NPs 相比,纳米颗粒实际上可以在 AR42J 肿瘤中积累,达到更高的水平,并且在 Co-DOTATATE 报道的分子剂的一半左右。

结论

确实需要额外的疏水性螯合剂 OA 才能获得稳定的八面体 OEP-Co-4OA。钴实际上在 OEP-Co-4OA 配合物中很好地保留在 LNP 内。目前在本工作中描述的用钴对 LNPs 进行核心标记的方法现已准备好对 Co 或其他六配位感兴趣的放射性核素进行 NP 标记,用于临床前体内 PET 成像和放射治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验