Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T1Z3, Canada.
Nanoscale. 2017 Sep 21;9(36):13600-13609. doi: 10.1039/c7nr03272b.
A straightforward "bottom-up" synthesis is described for efficient entrapment of inorganic hydrophobic nanoparticles (HNPs) consisting of iron oxide, gold, or quantum dots within the hydrophobic core of lipid nanoparticles (LNPs). These LNPs consist of hydrophobic "core" lipids such as triolein surrounded by a monolayer of amphipathic "surface" lipids, such as phosphatidylcholine and polyethylene-glycol-lipid. It is shown that rapid, controlled mixing of HNPs, core lipids and surface lipids in an organic solvent with an aqueous phase resulted in stable, monodisperse LNPs containing HNPs (LNP-HNP). This method allows 40-fold more hydrophobic iron oxide nanoparticles (IONPs) to be entrapped within an LNP than previous methods and can be readily extended to encapsulate other HNPs. The LNP-HNP diameter can be modulated over the range of 35-150 nm by varying the flow rate during particle synthesis or by varying the core-to-surface lipid ratio. LNP-IONPs can be generated using a variety of "core" lipids, including other triglycerides as well as cholesteryl-palmitate and tocopherol. Finally, it is shown that LNP-IONPs are accumulated in the liver, resulting in enhanced contrast for in vivo MRI. It is concluded that the bottom-up approach for encapsulating HNPs within LNPs has advantages of homogeneity, reproducibility and stability required for biomedical applications.
一种直接的“自下而上”的合成方法被描述为高效地将无机疏水性纳米粒子(HNPs)包埋在脂质纳米粒子(LNPs)的疏水性核心内,这些 HNPs 由氧化铁、金或量子点组成。这些 LNPs 由疏水性“核心”脂质(如三油酸甘油酯)组成,周围是一层两亲性“表面”脂质,如磷脂酰胆碱和聚乙二醇脂质。研究表明,将 HNPs、核心脂质和表面脂质在有机溶剂中与水相快速、可控地混合,可得到稳定的单分散 LNPs,其中包含 HNPs(LNP-HNP)。与以前的方法相比,该方法可将多达 40 倍的疏水性氧化铁纳米粒子(IONPs)包埋在 LNP 中,并且可以很容易地扩展到封装其他 HNPs。通过改变粒子合成过程中的流速或改变核-壳脂质比,可以将 LNP-HNP 的直径调节在 35-150nm 的范围内。LNP-IONPs 可以使用各种“核心”脂质生成,包括其他三酸甘油酯以及胆固醇棕榈酸酯和生育酚。最后,研究表明 LNP-IONPs 在肝脏中积累,从而增强了体内 MRI 的对比。结论是,将 HNPs 包埋在 LNPs 中的自下而上的方法具有生物医学应用所需的均一性、重现性和稳定性优势。