Costa Rafael S, Vinga Susana
IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Biotechnol Prog. 2018 Nov;34(6):1344-1354. doi: 10.1002/btpr.2700. Epub 2018 Oct 9.
Over the last years, several genome-scale metabolic models (GEMs) and kinetic models of Escherichia coli were published. Their predictive performance varies according to the evaluation metric considered, the computational simulation methods used, and the type/quality of experimental data available. However, the GEM approach is often not compared with the kinetic modeling framework. Also, the different genome-scale reconstruction versions and simulation methods of mutant phenotypes are usually not validated to predict intracellular fluxes using large experimental datasets. Here, we intended to (i) systematically evaluate the prediction performance of three E. coli GEMs (iJR904, iAF1260, and iJO1366) available in the literature according to predictive growth metrics (intracellular flux distribution); (ii) assess the reliability of a E. coli GEM in the prediction of gene knockout phenotypes when different simulation methods (parsimonious flux balance analysis, Minimization of Metabolic Adjustment, linear version of MoMA, Regulatory on/off minimization, and Minimization of Metabolites Balance) are used; and finally (iii) investigate the flux distribution predictive power of the constrained-based modeling approach (selected stoichiometric GEM) and compare it with the kinetic modeling approach (two published kinetic models) for E. coli central metabolism, in order to assess their accuracy. Results show that the phenotype predictions were not significantly sensitive to the metabolic models, although the GEM iAF1260 was more accurate in the prediction of central carbon fluxes at low dilution rates. Furthermore, we observed that the choice of the appropriate simulation method of mutant phenotypes depends on the biological question to be addressed. In terms of the two modeling approaches, none outperformed the other for all the tested scenarios. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1344-1354, 2018.
在过去几年中,已经发表了几个大肠杆菌的全基因组规模代谢模型(GEMs)和动力学模型。它们的预测性能根据所考虑的评估指标、使用的计算模拟方法以及可用实验数据的类型/质量而有所不同。然而,GEM方法通常没有与动力学建模框架进行比较。此外,不同的全基因组规模重建版本和突变体表型的模拟方法通常没有使用大型实验数据集进行验证以预测细胞内通量。在此,我们旨在(i)根据预测生长指标(细胞内通量分布)系统地评估文献中可用的三个大肠杆菌GEMs(iJR904、iAF1260和iJO1366)的预测性能;(ii)评估当使用不同模拟方法(简约通量平衡分析、代谢调节最小化、MoMA的线性版本、调控开/关最小化和代谢物平衡最小化)时,大肠杆菌GEM在预测基因敲除表型方面的可靠性;最后(iii)研究基于约束的建模方法(选定的化学计量GEM)对大肠杆菌中心代谢的通量分布预测能力,并将其与动力学建模方法(两个已发表的动力学模型)进行比较,以评估它们的准确性。结果表明,表型预测对代谢模型的敏感性不显著,尽管GEM iAF1260在低稀释率下对中心碳通量的预测更准确。此外,我们观察到突变体表型的适当模拟方法的选择取决于要解决的生物学问题。就这两种建模方法而言,在所有测试场景中,没有一种方法优于另一种。© 2018美国化学工程师学会生物技术进展,34:1344 - 1354,2018。