Zernike Institute for Advanced Materials , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.
Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37625-37633. doi: 10.1021/acsami.8b11115. Epub 2018 Oct 18.
This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 10 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms.
本文描述了软质可拉伸生物光伏器件的制造,这些器件通过自组装在具有优选取向的 Au 电极上的光系统 I(PSI)复合物产生光电流。通过将电子直接注入 Au 电极并通过氧化还原对将空穴传输到限制在微流伪通道中的液态共晶镓-铟(EGaIn)电极来收集电荷,该微流伪通道由柱阵列限定。伪通道在单个制造步骤中定义,该步骤利用了 EGaIn 的非牛顿流变学。该策略扩展到制造具有内在可拉伸性的网状电极。与平面电极相比,通过简单的阴影蒸发技术将 Au 电极的表面积增加了约 10 倍。生物光伏器件的功率转换效率随时间降低,可能是因为 PSI 复合物变性和/或从 Au 电极上脱落。然而,通过循环含有活性 PSI 复合物的溶液,器件通过质量作用/自组装自我再生。这些器件利用简单的制造技术来产生复杂的功能,并证明包含 PSI 的光伏器件可以保留再生的能力,这是光合生物最重要的功能之一。