Suppr超能文献

用于超级电容器的具有可控孔径的纸衍生柔性 3D 互联碳微纤维网络。

Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors.

机构信息

State Key Laboratory of Heavy Oil Processing, Institute of New Energy , China University of Petroleum (East China) , Qingdao 266580 , P. R. China.

International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan.

出版信息

ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37046-37056. doi: 10.1021/acsami.8b13281. Epub 2018 Oct 22.

Abstract

Heteroatom-doped three-dimensional (3D) carbon fiber networks have attracted immense interest because of their extensive applications in energy-storage devices. However, their practical production and usage remain a great challenge because of the costly and complex synthetic procedures. In this work, flexible B, N, and O heteroatom-doped 3D interconnected carbon microfiber networks (BNOCs) with controllable pore sizes and elemental contents were successfully synthesized via a facile one-step "chemical vapor etching and doping" method using cellulose-made paper, the most abundant and cost-effective biomass, as an original network-frame precursor. Under a rational design, the BNOCs exhibited interconnected microfiber-network structure as expressways for electron transport, spacious accessible surface area for charge accumulation, abundant mesopores and macropores for rapid inner-pore ion diffusion, and lots of functional groups for additional pseudocapacitance. Being applied as binder-free electrodes for supercapacitors, BNOC-based supercapacitors not only revealed a high specific capacitance of 357 F g, a high capacitance retention of 150 F g at 200 A g, a high energy density of 12.4 W h kg, and a maximum power density of 300.6 kW kg with an aqueous electrolyte in two-electrode configuration but also exhibited a high specific capacitance of up to 242.4 F g in an all-solid-state supercapacitor.

摘要

杂原子掺杂的三维(3D)碳纤维网络由于在储能器件中的广泛应用而引起了极大的关注。然而,由于其昂贵且复杂的合成工艺,其实际生产和使用仍然是一个巨大的挑战。在这项工作中,通过使用纤维素纸(最丰富且最具成本效益的生物质)作为原始网络框架前体,通过简便的一步“化学气相刻蚀和掺杂”方法成功合成了具有可控孔径和元素含量的柔性 B、N 和 O 杂原子掺杂的 3D 互穿碳微纤维网络(BNOCs)。在合理的设计下,BNOCs 表现出互穿微纤维网络结构,作为电子传输的高速公路,具有丰富的可及表面积以实现电荷积累,具有丰富的中孔和大孔以实现快速的内孔离子扩散,以及许多官能团以提供额外的赝电容。作为超级电容器的无粘结剂电极,基于 BNOC 的超级电容器不仅在两电极配置中以水系电解质显示出 357 F g 的高比电容、200 A g 时 150 F g 的高电容保持率、12.4 W h kg 的高能量密度和 300.6 kW kg 的最大功率密度,而且在全固态超级电容器中可达到高达 242.4 F g 的比电容。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验