Yan Xiaona, You Hanjing, Liu Wei, Wang Xiaodong, Wu Dezhen
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Nanomaterials (Basel). 2019 Aug 22;9(9):1189. doi: 10.3390/nano9091189.
Flexible and heteroatoms-doped (N, O and P) activated carbon nanofiber networks (ACFNs) have been successfully prepared with a mixture of polyamic acid (PAA) and poly(diaryloxyphosphazene) (PDPP) as a solution through electrospinning, followed by a heat post-treatment. The resultant heteroatoms-doped ACFNs can be used as binder-free electrodes for high-performance flexible supercapacitors (SCs) due to lightweight, three-dimensional open-pore structure and good mechanical strength. Despite its surface area being lower than 130.6 m·g, the heteroatoms-doped ACFNs exhibited a high heteroatoms (N, O and P) content of 17.9%, resulting in a highly specific capacitance of 182 F·g at a current density of 1 A·g in 6 M KOH electrolyte in a two-electrode cell and an excellent rate capability of 74.7% of its initial capacitance from 1 A·g to 10 A·g under the mass loading of 1.5 mg·cm. The electrical double-layer (EDL) capacitance and pseudocapacitance can be easily decoupled in the heteroatoms-doped mesoporous ACFNs. SCs device based on heteroatoms-doped ACFNs exhibited a high energy density of 6.3 W·h·kg with a power density of 250 W·kg, as well as excellent cycling stability with 88% capacitance retention after 10,000 charge-discharge cycles. The excellent electrochemical performance was attributed to the mesoporous structure of ACFNs and pseudocapacitive heteroatoms.
以聚酰胺酸(PAA)和聚二芳氧基磷腈(PDPP)的混合物为溶液,通过静电纺丝成功制备了柔性且掺杂杂原子(N、O和P)的活性炭纳米纤维网络(ACFNs),随后进行热后处理。所得的掺杂杂原子的ACFNs由于重量轻、三维开孔结构和良好的机械强度,可作为高性能柔性超级电容器(SCs)的无粘结剂电极。尽管其表面积低于130.6 m²·g,但掺杂杂原子的ACFNs显示出17.9%的高杂原子(N、O和P)含量,在两电极电池的6 M KOH电解液中,在1 A·g的电流密度下具有182 F·g的高比电容,并且在1.5 mg·cm²的质量负载下,从1 A·g到10 A·g具有74.7%的初始电容的优异倍率性能。在掺杂杂原子的中孔ACFNs中,双电层(EDL)电容和赝电容可以很容易地解耦。基于掺杂杂原子的ACFNs的SCs器件表现出6.3 W·h·kg的高能量密度和250 W·kg的功率密度,以及在10000次充放电循环后88%的电容保持率的优异循环稳定性。优异的电化学性能归因于ACFNs的中孔结构和赝电容性杂原子。