IEEE Trans Med Imaging. 2019 Mar;38(3):862-872. doi: 10.1109/TMI.2018.2873842. Epub 2018 Oct 5.
We present a 3D bioimage analysis workflow to quantitatively analyze single, actin-stained cells with filopodial protrusions of diverse structural and temporal attributes, such as number, length, thickness, level of branching, and lifetime, in time-lapse confocal microscopy image data. Our workflow makes use of convolutional neural networks trained using real as well as synthetic image data, to segment the cell volumes with highly heterogeneous fluorescence intensity levels and to detect individual filopodial protrusions, followed by a constrained nearest-neighbor tracking algorithm to obtain valuable information about the spatio-temporal evolution of individual filopodia. We validated the workflow using real and synthetic 3-D time-lapse sequences of lung adenocarcinoma cells of three morphologically distinct filopodial phenotypes and show that it achieves reliable segmentation and tracking performance, providing a robust, reproducible and less time-consuming alternative to manual analysis of the 3D+t image data.
我们提出了一个 3D 生物图像分析工作流程,用于定量分析具有不同结构和时间属性(例如数量、长度、厚度、分支水平和寿命)的单个、肌动蛋白染色的带有丝状伪足的细胞,这些细胞来自于共聚焦显微镜图像数据的延时拍摄。我们的工作流程利用了经过真实和合成图像数据训练的卷积神经网络,对具有高度异质荧光强度水平的细胞体积进行分割,并检测单个丝状伪足,然后使用受限最近邻跟踪算法来获取关于单个丝状伪足的时空演化的有价值的信息。我们使用三种形态上明显不同的丝状伪足表型的肺腺癌细胞的真实和合成 3D 延时序列验证了该工作流程,并表明它实现了可靠的分割和跟踪性能,为 3D+t 图像数据的手动分析提供了一种稳健、可重复且耗时更少的替代方案。