Suppr超能文献

llama:一个用于分析大规模 4D 显微镜数据的强大且可扩展的机器学习管道:细胞皱襞和丝状伪足的分析。

LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.

Research Computing Centre, The University of Queensland, Brisbane, QLD, Australia.

出版信息

BMC Bioinformatics. 2021 Aug 19;22(1):410. doi: 10.1186/s12859-021-04324-z.

Abstract

BACKGROUND

With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrogating these datasets. The surfaces of vertebrate cells can rapidly deform to create projections that interact with the microenvironment. Such surface projections include spike-like filopodia and wave-like ruffles on the surface of macrophages as they engage in immune surveillance. LLSM imaging has provided new insights into the complex surface behaviours of immune cells, including revealing new types of ruffles. However, full use of these data requires systematic and quantitative analysis of thousands of projections over hundreds of time steps, and an effective system for analysis of individual structures at this scale requires efficient and robust methods with minimal user intervention.

RESULTS

We present LLAMA, a platform to enable systematic analysis of terabyte-scale 4D microscopy datasets. We use a machine learning method for semantic segmentation, followed by a robust and configurable object separation and tracking algorithm, generating detailed object level statistics. Our system is designed to run on high-performance computing to achieve high throughput, with outputs suitable for visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: we provide a specialised tool which supports interactive quality control, optimisation, and output visualisation processes to complement the processing pipeline. LLAMA is demonstrated in an analysis of macrophage surface projections, in which it is used to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies.

CONCLUSIONS

LLAMA provides an effective open source tool for running a cell microscopy analysis pipeline based on semantic segmentation, object analysis and tracking. Detailed numerical and visual outputs enable effective statistical analysis, identifying distinct patterns of increased activity under the two interventions considered in our example analysis. Our system provides the capacity to screen large datasets for specific structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like ruffling and filopodia deployment.

摘要

背景

随着显微镜技术的最新进展,细胞行为的记录可能会产生兆字节大小的数据集。晶格光片显微镜 (LLSM) 以高速和高 3D 分辨率成像细胞,每 100 帧/秒采集数据数小时,这对研究这些数据集提出了重大挑战。脊椎动物细胞的表面可以快速变形以创建突起,这些突起与微环境相互作用。这种表面突起包括巨噬细胞表面的刺状丝状伪足和波浪状皱襞,它们参与免疫监视。LLSM 成像为免疫细胞的复杂表面行为提供了新的见解,包括揭示新类型的皱襞。然而,充分利用这些数据需要对数百个时间步长内的数千个突起进行系统和定量分析,并且在这种规模下分析单个结构的有效系统需要高效、稳健且用户干预最小的方法。

结果

我们提出了 LLAMA,这是一个能够对兆字节规模的 4D 显微镜数据集进行系统分析的平台。我们使用机器学习方法进行语义分割,然后使用稳健且可配置的对象分离和跟踪算法,生成详细的对象级统计信息。我们的系统旨在在高性能计算上运行,以实现高吞吐量,其输出适合可视化和统计分析。高级可视化是 LLAMA 的关键要素:我们提供了一个专门的工具,支持交互式质量控制、优化和输出可视化过程,以补充处理管道。LLAMA 在巨噬细胞表面突起的分析中得到了验证,用于 i)区分脂多糖 (LPS) 和巨噬细胞集落刺激因子 (CSF-1) 诱导的皱襞,以及 ii)确定皱襞形态的自主性。

结论

LLAMA 提供了一种有效的开源工具,用于运行基于语义分割、对象分析和跟踪的细胞显微镜分析管道。详细的数值和可视化输出可实现有效的统计分析,确定我们示例分析中两种干预措施下活性增加的不同模式。我们的系统提供了筛选特定结构配置的大型数据集的能力。LLAMA 确定了 LPS 和 CSF-1 诱导的皱襞的不同特征,并确定了帐篷杆状皱襞、波浪状皱襞和丝状伪足展开之间的连续行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验