Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.
Centre National de la Recherche Scientifique (CNRS), Paris, France.
Elife. 2022 Jan 6;11:e69380. doi: 10.7554/eLife.69380.
Deep learning is emerging as a powerful approach for bioimage analysis. Its use in cell tracking is limited by the scarcity of annotated data for the training of deep-learning models. Moreover, annotation, training, prediction, and proofreading currently lack a unified user interface. We present ELEPHANT, an interactive platform for 3D cell tracking that addresses these challenges by taking an incremental approach to deep learning. ELEPHANT provides an interface that seamlessly integrates cell track annotation, deep learning, prediction, and proofreading. This enables users to implement cycles of incremental learning starting from a few annotated nuclei. Successive prediction-validation cycles enrich the training data, leading to rapid improvements in tracking performance. We test the software's performance against state-of-the-art methods and track lineages spanning the entire course of leg regeneration in a crustacean over 1 week (504 timepoints). ELEPHANT yields accurate, fully-validated cell lineages with a modest investment in time and effort.
深度学习正在成为生物图像分析的一种强大方法。它在细胞跟踪中的应用受到用于训练深度学习模型的注释数据稀缺的限制。此外,注释、训练、预测和校对目前缺乏统一的用户界面。我们提出了 ELEPHANT,这是一个用于 3D 细胞跟踪的交互式平台,通过对深度学习采用增量方法来解决这些挑战。ELEPHANT 提供了一个界面,无缝集成了细胞跟踪注释、深度学习、预测和校对。这使用户能够从少数几个注释核开始执行增量学习循环。连续的预测-验证循环丰富了训练数据,从而快速提高跟踪性能。我们针对最先进的方法测试了该软件的性能,并在一个多星期(504 个时间点)的时间里跟踪了甲壳类动物腿部再生过程中的整个谱系。ELEPHANT 只需投入少量的时间和精力,即可获得准确、完全验证的细胞谱系。