Suppr超能文献

地震经历揭示的大规模电路相互作用:基于递归神经网络的研究。

Large-Scale Circuitry Interactions Upon Earthquake Experiences Revealed by Recurrent Neural Networks.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2115-2125. doi: 10.1109/TNSRE.2018.2872919. Epub 2018 Oct 5.

Abstract

Brain dynamics has recently received increasing interest due to its significant importance in basic and clinical neurosciences. However, due to inherent difficulties in both data acquisition and data analysis methods, studies on large-scale brain dynamics of mouse with local field potential (LFP) recording are very rare. In this paper, we did a series of works on modeling large-scale mouse brain dynamic activities responding to fearful earthquake. Based on LFP recording data from 13 brain regions that are closely related to fear learning and memory and the effective Bayesian connectivity change point model, we divided the response time series into four stages: "Before," "Earthquake," "Recovery," and "After." We first reported the changes in power and theta-gamma coupling during stage transitions. Then, a recurrent neural network model was designed to model the functional dynamics in these thirteen brain regions and six frequency bands in response to the fear stimulus. Interestingly, our results showed that the functional brain connectivities in theta and gamma bands exhibited distinct response processes: in theta band, there is a separated-united-separated alternation in whole-brain connectivity and a low-high-low change in connectivity strength; however, gamma bands have a united-separated-united transition and a high-low-high alternation in connectivity pattern and strength. In general, our results offer a novel perspective in studying functional brain dynamics under fearful stimulus and reveal its relationship to the brain's structural connectivity substrates.

摘要

脑动力学最近受到越来越多的关注,因为它在基础和临床神经科学中具有重要意义。然而,由于在数据采集和数据分析方法方面存在固有的困难,因此用局部场电位(LFP)记录对大规模老鼠脑动力学进行研究非常罕见。在本文中,我们针对地震恐惧时大规模老鼠脑动态活动进行了一系列研究。基于与恐惧学习和记忆密切相关的 13 个脑区的 LFP 记录数据和有效的贝叶斯连通性变化点模型,我们将响应时间序列分为四个阶段:“之前”、“地震”、“恢复”和“之后”。我们首先报告了在阶段转换过程中功率和θ-γ 耦合的变化。然后,设计了一个递归神经网络模型来模拟这 13 个脑区和 6 个频带对恐惧刺激的功能动力学反应。有趣的是,我们的结果表明,θ 和 γ 频带中的功能脑连接表现出不同的响应过程:在θ 频带中,整个大脑连接的分离-统一-分离交替出现,连接强度呈低-高-低变化;然而,γ 频带具有统一-分离-统一的转变,连接模式和强度呈高-低-高的交替。总的来说,我们的结果为研究恐惧刺激下的功能脑动力学提供了新的视角,并揭示了其与大脑结构连通性基质的关系。

相似文献

7
Fear extinction learning modulates large-scale brain connectivity.恐惧消除学习调节大脑的大范围连接。
Neuroimage. 2021 Sep;238:118261. doi: 10.1016/j.neuroimage.2021.118261. Epub 2021 Jun 11.
9
Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.支持抑制控制的大脑网络重配置的时间进程。
J Neurosci. 2018 May 2;38(18):4348-4356. doi: 10.1523/JNEUROSCI.2639-17.2018. Epub 2018 Apr 10.

引用本文的文献

本文引用的文献

7
EEG Signatures of Dynamic Functional Network Connectivity States.动态功能网络连接状态的脑电图特征
Brain Topogr. 2018 Jan;31(1):101-116. doi: 10.1007/s10548-017-0546-2. Epub 2017 Feb 22.
8
Methods for cleaning the BOLD fMRI signal.清洗BOLD功能磁共振成像信号的方法。
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.
9
Brain Computation Is Organized via Power-of-Two-Based Permutation Logic.脑计算通过基于2的幂次排列逻辑进行组织。
Front Syst Neurosci. 2016 Nov 15;10:95. doi: 10.3389/fnsys.2016.00095. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验