1 Department of Biomedical Engineering, Emory University/Georgia Institute of Technology , Atlanta, Georgia .
2 Basque Center of Cognition , Brain and Language, San Sebastian, Spain .
Brain Connect. 2017 Oct;7(8):465-481. doi: 10.1089/brain.2017.0543.
Time-resolved analysis of resting-state functional magnetic resonance imaging (rs-fMRI) data allows researchers to extract more information about brain function than traditional functional connectivity analysis, yet a number of challenges in data analysis and interpretation remain. This article briefly summarizes common methods for time-resolved analysis and presents some of the pressing issues and opportunities in the field. From there, the discussion moves to interpretation of the network dynamics observed with rs-fMRI and the role that rs-fMRI can play in elucidating the large-scale organization of brain activity.
静息态功能磁共振成像(rs-fMRI)数据的时分辨析方法使研究人员能够提取比传统功能连接分析更多的大脑功能信息,但数据分析和解释仍存在许多挑战。本文简要总结了时分辨析的常用方法,并介绍了该领域当前面临的一些紧迫问题和机遇。在此基础上,进一步讨论了 rs-fMRI 观察到的网络动力学的解释以及 rs-fMRI 在阐明大脑活动的大规模组织中的作用。